\qquad

Quiz for October 10, 2006

Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
2 & 5 & 3 & -1 \\
2 & 2 & 0 & 2 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Express each column of A as a linear combination of the vectors in your answer to (b).
ANSWER: To find a basis for the null space of A, we solve $A x=0$. In other words, we apply Elementary Row Operations to A. Apply $R 2 \mapsto R 2-2 R 1$ and $R 3 \mapsto R 3-2 R 1$ to get:

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 \\
0 & -2 & -2 & 2 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

Apply $R 1 \mapsto R 1-2 R 2, R 3 \mapsto R 3+2 R 2$, and $R 4 \mapsto R 4-R 2$ to get

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The solution set of $A x=0$ is the set of all vectors x with

$$
\begin{array}{cccc}
x_{1} & = & x_{3} & -2 x_{4} \\
x_{2} & = & -x_{3} & +x_{4} \\
x_{3} & = & x_{3} & \\
x_{4} & = & & x_{4}
\end{array}
$$

In other words the null space of A is the set of linear combinations of

$$
\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right]
$$

These two vectors are linearly independent (look at rows 3 and 4); so our answer to (a) is

$$
\text { (a) } \quad v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right]
$$

The columns in A that correspond to the leading ones in the reduced matrix are a basis for the column space of A. Columns 1 and 2 in the reduced matrix have leading ones; so our basis for the column space of A is columns 1 and 2 of A; in other words, our answer to (b) is

$$
\text { (b) } \quad A_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
0
\end{array}\right], \quad A_{2}\left[\begin{array}{l}
2 \\
5 \\
2 \\
1
\end{array}\right]
$$

The fact that v_{1} is in the null space of A tells us that $A_{1}-A_{2}+A_{3}=0$; this tells us how to write the third column of A in terms of our answer to (b). The fact that v_{2} is in the null space of A tells us that $-2 A_{1}+A_{2}+A_{4}=0$. Our answer to (c) is:

$$
\text { (c) } \quad A_{3}=-A_{1}+A_{2}, \quad A_{4}=2 A_{1}-A_{2}
$$

