PRINT Your Name: \qquad

Quiz for January 18, 2011

Solve the following system of equations:

$$
\begin{aligned}
x_{1}+x_{2}-x_{5} & =1 \\
x_{2}+2 x_{3}+x_{4}+3 x_{5} & =1 \\
x_{1}-x_{3}+x_{4}+x_{5} & =0
\end{aligned}
$$

Circle your answer. Check that your answer is correct. Remove everything from your desk, except this piece of paper and your pen or pencil.
ANSWER: Start with the matrix

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
1 & 0 & -1 & 1 & 1 & 0
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{1}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & -1 & -1 & 1 & 2 & -1
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-R_{2}$ and $R_{3} \mapsto R_{3}+R_{2}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -2 & -1 & -4 & 0 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}+2 R_{3}$ and $R_{2} \mapsto R_{2}-2 R_{3}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 3 & 6 & 0 \\
0 & 1 & 0 & -3 & -7 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]
$$

This matrix is in reduced row echelon from. The solution set is the set of

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

such that

$$
\begin{aligned}
& x_{1}=-3 x_{4}-6 x_{5} \\
& x_{2}=1+3 x_{4}+7 x_{5} \\
& x_{3}=-2 x_{4}-5 x_{5}
\end{aligned}
$$

such that x_{4} and x_{5} are arbitrary. A different way to say this is to say that the solution set is
$\left\{\left.\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-3 \\ 3 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-6 \\ 7 \\ -5 \\ 0 \\ 1\end{array}\right] \right\rvert\, x_{4}, x_{5} \in \mathbb{R}\right\}$

Check. Our answer is correct. When $x_{4}=x_{5}=0$ our answer is
$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$
and this proposed solution works because

$$
\begin{aligned}
& 1=1 \\
& 1=1 \\
& 0=0 . \checkmark
\end{aligned}
$$

When $x_{4}=1$ and $x_{5}=0$ our answer is

$$
\left[\begin{array}{c}
-3 \\
4 \\
-2 \\
1 \\
0
\end{array}\right]
$$

and this proposed solution works because

$$
\begin{aligned}
& -3+4=1 \\
& 4-4+1=1 \\
& -3+2+1=0 . \checkmark
\end{aligned}
$$

When $x_{4}=0$ and $x_{5}=1$ our answer is
$\left[\begin{array}{c}-6 \\ 8 \\ -5 \\ 0 \\ 1\end{array}\right]$
and this proposed solution works because

$$
\begin{aligned}
& -6+8-1=1 \\
& 8-10+3=1 \\
& -6+5+1=0 . \checkmark
\end{aligned}
$$

