Quiz 9, March 31, 2016

Let A and B be $n \times n$ matrices, with A non-singular. Does the column space of B have to equal the column space of $A B$? If the answer is yes, then give a complete, correct, proof. If the answer is no, then give an example.

Answer: No. Consider $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Observe that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. We see that the column space of $A B$ is the set of multiples of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$; hence $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in the column space of B; but is not in the column space of $A B$.

