Quiz 8, March 24, 2016

Let A be an $m \times m$ non-singular matrix and B be an $m \times n$ matrix.
(a) Prove that $A B$ and B have the same null space.
(b) Prove that the column space of $A B$ and the column space of B have the same dimension.

Answer: (a) We first prove that the null space of B is a subset of the null space of $A B$. If v is in the null space of B, then $B v=0$; hence, $A B v=0$. Thus, v is also in the null space of $A B$.

Now we show that the null space of $A B$ is contained in the null space of B. If v is in the null space of $A B$ then $A B v=0$. The matrix A is non-singular and $A(B v)=0$. It follows that $B v=0$; hence v is also in the null space of B.
(b) The rank nullity theorem tells us that the dimension of the column space of $A B$ is equal to the number of columns of $A B$ minus the dimension of the null space of $A B$. The number of columns of $A B$ is the same as the number of columns of B. We saw in (a) that $A B$ and B have the same null space. Thus the dimension of the column space of $A B$ is equal to the number of columns of B minus the dimension of the null space of B and the rank nullity theorem guarantees that the most recent number is the dimension of the column space of B.

