Quiz 4, February 11, 2016

Determine the conditions on the numbers a and b which cause the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
a \\
3
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
0 \\
2 \\
b
\end{array}\right]
$$

to be linearly dependent.
Answer We solve the system of equations $A c=0$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & a & 2 \\
1 & 3 & b
\end{array}\right] \quad c=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right], \quad \text { and } \quad 0=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

We apply Gaussian elimination to

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & a & 2 \\
1 & 3 & b
\end{array}\right] .
$$

(There is no need to augment the matrix with a column of zeros.) Replace $R 2 \mapsto R 2-2 R 1$ and $R 3 \mapsto R 3-R 1$ to obtain

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & a-2 & 2 \\
0 & 2 & b
\end{array}\right] .
$$

Exchange rows 2 and 3 to obtain

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & b \\
0 & a-2 & 2
\end{array}\right]
$$

Replace $R 3 \mapsto R 3-\frac{a-2}{2} R 2$ to obtain

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & b \\
0 & 0 & 2-\frac{b(a-2)}{2}
\end{array}\right] .
$$

If $2-\frac{b(a-2)}{2} \neq 0$, then the only vector c with $A c=0$ is $c=0$ and v_{1}, v_{2}, v_{3} are linearly independent.

If $2-\frac{b(a-2)}{2}=0$, then there are many vectors c with $A c=0$ and v_{1}, v_{2}, v_{3} are linearly dependent.

