Quiz 2, January 26, 2015
Let A and B be 2×2 matrices. Prove or find a counterexample to the following statement:

$$
(A-B)(A+B)=A^{2}-B^{2} .
$$

Answer. The statement is false. Numbers satisfy the given equation because numbers commute under multiplication. Any two matrices which do not commute under multiplication give a counterexample. So for example we take $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. We see

$$
\begin{gathered}
(A-B)(A+B)=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right] \\
A^{2}-B^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Thus, $(A-B)(A+B)$ is not always equal to $A^{2}-B^{2}$, when A and B are 2×2 matrices.

