PRINT Your Name: \qquad
Quiz for June 14, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.

The Question: Suppose $V_{1} \subseteq V_{2} \subseteq V_{3}$ are vector spaces and $v_{1}, v_{2}, v_{3}, v_{4}$ are vectors in V_{3} which form a basis for V_{3}. Suppose further, that v_{1}, v_{2}, v_{3} are in V_{2} and $v_{4} \notin V_{2}$. Suppose v_{1}, v_{2} are in V_{1} and $v_{3} \notin V_{1}$. Do you have enough information to know the dimension of V_{1}. Explain very thoroghly.

The Solution: You proved on yesterday's Quiz that if $U \subseteq W$ are finite dimensional vector spaces with $U \neq W$, then $\operatorname{dim} U<\operatorname{dim} W$. We will use this fact twice in the present problem. We will also use the fact that if r linearly independent vectors live in a vector space U, then $\operatorname{dim} U \geq r$.
The vector space V_{3} has dimension 4 because it has a basis with four vectors. The vector space V_{2} is a proper subspace of V_{3} because v_{4} is in V_{3}, but not in V_{2}. It follows that the dimension of V_{2} must be less than 4 . On the other hand, the vectors v_{1}, v_{2}, v_{3} are linearly independent vectors in V_{2}; so $\operatorname{dim} V_{2} \geq 3$. We have shown that $\operatorname{dim} V_{2}$ must equal 3. The vector space V_{1} is a proper subspace of V_{2}; hence $\operatorname{dim} V_{1} \leq 2$. We have exhibited 2 linearly independent vectors in V_{2}; thus, $\operatorname{dim} V_{2} \geq 2$; and in fact, $\operatorname{dim} V_{1}$ must equal 2 .

