\qquad

Quiz for June 13, 2012

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.

The Question: Let V and W be subspaces of \mathbb{R}^{n} with $V \subseteq W$.
(a) Does the dimension of V have to be \leq the dimension of W ? If yes, then give a complete, correct, proof. If no, then give an explicit example.
(b) Suppose $\operatorname{dim} V=\operatorname{dim} W$. Does V have to equal W ? If yes, then give a complete, correct, proof. If no, then give an explicit example.

The Solution: The answer to (a) is: YES. A basis for V is a linearly independent set in W. Every linearly independent set in W is contained in a basis for W, according to

Theorem 2. If V is a subspace of \mathbb{R}^{n}, then every linearly independent subset in V is part of a basis for V.

It follows that the dimension of V, which is the number of vectors in a basis for V, is less than or equal to the dimension of W, which is the number of vectors in a basis for W.

The answer to (b) is: YES. Let v_{1}, \ldots, v_{p} be a basis for V. Part (a) shows that v_{1}, \ldots, v_{p} is part of a basis for W. However every basis for W has p vectors according to

Theorem 1. If V is a subspace of \mathbb{R}^{n}, then every basis for V has the same number of vectors.

So v_{1}, \ldots, v_{p} are already a basis for W. In particular v_{1}, \ldots, v_{p} span W. Every element in W is automatically also in V. The sets V and W are equal.

