MATH 544, HOMEWORK, SPRING 2022

(1) Find the general solution of the following system of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{5}=1 \\
& x_{2}+2 x_{3}+x_{4}+3 x_{5}=1 \\
& x_{1} \quad-x_{3}+x_{4}+x_{5}=0 .
\end{aligned}
$$

Also find three particular solutions of this system of equations. Be sure to check that all three of your particular solutions really satisfy the original system of linear equations.

Answer: We use the notation of augmented matrices:

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
1 & 0 & -1 & 1 & 1 & 0
\end{array}\right] .
$$

Replace row 3 with row 3 minus row 1 :

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & -1 & -1 & 1 & 2 & -1
\end{array}\right]
$$

Replace row 1 with row 1 minus row 2 and replace row 3 with row 3 plus row 2 :

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -2 & -1 & -4 & 0 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]
$$

Replace row 1 with row 1 plus 2 row 3 and replace row 2 with row 2 minus 2 row 3:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 3 & 6 & 0 \\
0 & 1 & 0 & -3 & -7 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right] .
$$

Our matrix is in reduced row echelon form. We read the answer. The general solution of the system of equations is

$$
\left\{\begin{array}{l}
x_{1}=0-3 x_{4}-6 x_{5} \\
x_{2}=1+3 x_{4}+7 x_{5} \\
x_{3}=0-2 x_{4}-5 x_{5} \\
x_{4}=x_{4} \quad x_{5}, \text { where } x_{4} \text { and } x_{5} \text { are free to take any value. } \\
x_{5}=
\end{array}\right.
$$

We consider the particular solutions when $x_{4}=x_{5}=0$, when $x_{4}=1$ and $x_{5}=0$, and when $x_{4}=0$ and $x_{5}=1$. These solutions are
$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], \quad\left[\begin{array}{c}-3 \\ 4 \\ -2 \\ 1 \\ 0\end{array}\right], \quad$ and $\quad\left[\begin{array}{c}-6 \\ 8 \\ -5 \\ 0 \\ 1\end{array}\right]$.

We check the first particular solution:

$$
\begin{aligned}
& 0+1-0=1 \checkmark \\
& 1+2(0)+0+3(0)=1 \checkmark \\
& 0 \quad-(0)+0+0=0 \checkmark \text {. }
\end{aligned}
$$

We check the second particular solution:

$$
\begin{array}{rr}
-3+4 & -0 \\
-4+2(-2)+1+3(0) & =1 \checkmark \\
-3 & -(-2)+1 \\
-0 & =0 \checkmark
\end{array}
$$

We check the third particular solution:

$$
\begin{aligned}
& -6+8-1=1 \checkmark \\
& 8+2(-5)+0+3(1)=1 \checkmark \\
& -6-(-5)+0+1=0 \checkmark \text {. }
\end{aligned}
$$

(2) Find the general solution of the following system of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}=4 \\
& x_{1}+2 x_{2}=6 .
\end{aligned}
$$

Answer: Replace equation 2 with equation 2 minus equation one:

$$
\begin{aligned}
x_{1}+x_{2} & =4 \\
& +x_{2}
\end{aligned}=2 .
$$

Replace equation 1 with equation 1 minus equation 2 :

$$
\begin{aligned}
x_{1} & =2 \\
& \\
+x_{2} & =2 .
\end{aligned}
$$

The general solution of the system of equations is

$$
\begin{array}{|l|}
\hline x_{1}=2 \\
x_{2}=2 \\
\hline
\end{array}
$$

We check our answer:

$$
\begin{array}{ll}
2+2 & =4 \checkmark \\
2+2(2) & =6 \checkmark
\end{array}
$$

(3) Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2} & =4 \\
x_{1}+2 x_{2} & =6 \\
5 x_{1} & +8 x_{2}
\end{aligned}=26
$$

Answer: Replace equation 2 with equation 2 minus equation 1 and
replace equation 3 with equation 3 minus 5 times equation 1:

$$
\begin{aligned}
x_{1} \quad x_{2} & =4 \\
+x_{2} & =2 \\
+3 x_{2} & =6 .
\end{aligned}
$$

Replace equation 1 with equation 1 minus equation 2 and replace equation 3 with equation 3 minus 3 times equation 2

$$
\begin{aligned}
x_{1} & =2 \\
+x_{2} & =2 \\
+0 & =0 .
\end{aligned}
$$

The general solution of the system of equations is

$$
\begin{array}{|l|}
\hline x_{1}=2 \\
x_{2}=2 \\
\hline
\end{array}
$$

We check our answer:

$$
\begin{array}{ccc}
2 & +2 & =4 \checkmark \\
2 & +2(2) & =6 \checkmark \\
5(2) & +8(2) & =26 \checkmark
\end{array}
$$

(4) (a) Find all values of a for which the following system of equations has no solution.
(b) Find all values of a for which the following system of equations has exactly one solution.
(c) Find all values of a for which the following system of equations has an infinite number of solutions.

$$
\begin{aligned}
x_{1} & +2 x_{2}=-3 \\
a x_{1} & -2 x_{2}=5
\end{aligned}
$$

Answer: We use augmented matrices:

$$
\left[\begin{array}{cc|c}
1 & 2 & -3 \\
a & -2 & 5
\end{array}\right]
$$

Replace Row 2 by Row 2 minus a times Row 1:

$$
\left[\begin{array}{cc|c}
1 & 2 & -3 \\
0 & -2-2 a & 5+3 a
\end{array}\right] .
$$

If $-2-2 a \neq 0$, then the system of equations has a unique solution. If $-2-2 a=0$, then $a=-1$ and the bottom equation is $0 x_{1}+0 x_{2}=2$, which has no solution.

The system of equations has a unique solution for all a except $a=-1$.
If $a=-1$, then the system of equations has no solution.
(5) Compute

$$
\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Answer: The product is

$$
\left[\begin{array}{l}
2(1)+3(3) \\
1(1)+4(3)
\end{array}\right]=\left[\begin{array}{l}
11 \\
13
\end{array}\right]
$$

(6) Find scalars a_{1} and a_{2} so that $a_{1} r+a_{2} s=t$, where

$$
r=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad s=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \text { and } \quad t=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

Answer: Find numbers a_{1} and a_{2} so that

$$
a_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

That is, solve the system of equations

$$
\begin{aligned}
a_{1}+2 a_{2} & =1 \\
3 a_{2} & =4
\end{aligned}
$$

Divide equation 2 by 3 :

$$
\begin{aligned}
a_{1}+2 a_{2} & =1 \\
a_{2} & =\frac{4}{3}
\end{aligned}
$$

Replace equation 1 minus 2 times equation 2 :

$$
\begin{array}{rr}
\hline a_{1} & =\frac{-5}{3} \\
& a_{2}
\end{array}=\frac{4}{3} .
$$

Of course, this works:

$$
\frac{-5}{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{4}{3}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \checkmark .
$$

(7) Find x so that $x^{\mathrm{T}} a=6$ and $x^{\mathrm{T}} b=2$, where

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad a=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

Answer: The equation $x^{\mathrm{T}} a=6$ is $x_{1}+2 x_{2}=6$. The equation $x^{\mathrm{T}} b=2$ is $3 x_{1}+4 x_{2}=2$. We solve the system of equations

$$
\left\{\begin{aligned}
x_{1}+2 x_{2} & =6 \\
3 x_{1}+4 x_{2} & =2 .
\end{aligned}\right.
$$

We use an augmented matrix:

$$
\left[\begin{array}{ll|l}
1 & 2 & 6 \\
3 & 4 & 2
\end{array}\right] .
$$

Replace Row 2 with Row 2 minus 3 Row 1:

$$
\left[\begin{array}{cc|c}
1 & 2 & 6 \\
0 & -2 & -16
\end{array}\right]
$$

Multiply Row 2 by -(1/2):

$$
\left[\begin{array}{ll|l}
1 & 2 & 6 \\
0 & 1 & 8
\end{array}\right]
$$

Replace Row 1 with Row 1 minus 2 Row 2:

$$
\left[\begin{array}{cc|c}
1 & 0 & -10 \\
0 & 1 & 8
\end{array}\right]
$$

So, $x_{1}=-10$ and $x_{2}=8$ and $x=\left[\begin{array}{c}-10 \\ 8\end{array}\right]$.
We verify:

$$
x^{\mathrm{T}} a=\left[\begin{array}{ll}
-10 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=-10+16=6
$$

and

$$
x^{\mathrm{T}} a=\left[\begin{array}{ll}
-10 & 8
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=-30+32=2 . \vee
$$

(8) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 symmetric matrices, then $A B$ is a symmetric matrix.
Answer: False. Here is an example. The matrices $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ are symmetric, but the product

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
5 & 8 \\
4 & 7
\end{array}\right]
$$

is not symmetric.
(9) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrices with $A^{2}=A B$, then $A=B$.
Answer: False. Here is an example. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, then

$$
A A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

So, $A^{2}=A B$, but $A \neq B$.
(10) Express $b=\left[\begin{array}{l}5 \\ 8\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.

Answer: We must find c_{1} and c_{2} with $c_{1} v_{1}+c_{2} v_{2}=b$. We apply Gaussian Elimination to $\left[\begin{array}{ll|l}1 & 3 & 5 \\ 2 & 4 & 8\end{array}\right]$.

Replace R_{2} with $R_{2}-2 R_{1}$ to get $\left[\begin{array}{cc|c}1 & 3 & 5 \\ 0 & -2 & -2\end{array}\right]$.
Replace R_{2} with $(-1 / 2) R_{2}$ to get $\left[\begin{array}{ll|l}1 & 3 & 5 \\ 0 & 1 & 1\end{array}\right]$.
Replace R_{1} with $R_{1}-3 R_{2}$ to get

$$
\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

We see that $c_{1}=2$ and $c_{2}=1$. We conclude that

$$
b=2 v_{1}+v_{2},
$$

and of course, this is correct because

$$
2 v_{1}+v_{2}=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]=b . \checkmark
$$

(11) Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{\mathrm{T}} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.

Answer: Suppose c_{1}, c_{2}, and c_{3} are numbers with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{0.0.1}
\end{equation*}
$$

Multiply by v_{1}^{T} to get

$$
c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}+c_{2} \cdot v_{1}^{\mathrm{T}} v_{2}+c_{3} \cdot v_{1}^{\mathrm{T}} v_{3}=0
$$

The hypothesis tells us that $v_{1}^{\mathrm{T}} v_{2}=0$ and $v_{1}^{\mathrm{T}} v_{3}=0$. So, $c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}=0$. The hypothesis also tells us that v_{1} is not zero; from which it follows that $v_{1}^{\mathrm{T}} v_{1} \neq$ 0 . We conclude that $c_{1}=0$. Multiply (0.0.1) by v_{2}^{T} to see that $c_{2} \cdot v_{2}^{\mathrm{T}} v_{2}=0$; hence, $c_{2}=0$, since the number $v_{2}^{\mathrm{T}} v_{2} \neq 0$. Multiply $\left({ }^{*}\right)$ by v_{3}^{T} to conclude that $c_{3}=0$. We have shown that each c_{i} MUST be zero. We conclude that v_{1}, v_{2}, and v_{3} are linearly independent.
(12) Let A and B be symmetric $n \times n$ matrices. Suppose that $A B$ is also a symmetric matrix. Prove that $A B=B A$.

Answer: When all of the listed hypotheses hold, then we have

$$
A B=(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}=B A
$$

The first equality holds because $A B$ is a symmetric matrix. The second equality holds for all matrices - we proved this result in class. The last equality holds because B and A both are symmetric matrices.
(13) Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}. Suppose that v_{1}, v_{2}, v_{3} are linearly dependent. Do the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ HAVE to be linearly dependent? If yes, PROVE the result. If no, show an EXAMPLE.

Answer: Yes. We are told that there are numbers c_{1}, c_{2}, c_{3}, not all zero, with

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0
$$

Take the old numbers c_{1}, c_{2}, c_{3} together with $c_{4}=0$. We now have

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}=0
$$

and at least one of the coefficients is non-zero. The vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.
(14) True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.)
If $v_{1}, v_{2}, v_{3}, v_{4}$ are in \mathbb{R}^{4} and v_{3} is not a linear combination of v_{1}, v_{2}, v_{4}, then the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent.

Answer: The assertion is false. Here is an example. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Observe that $v_{3} \neq c_{1} v_{1}+c_{2} v_{2}+c_{4} v_{4}$ for any choice of c_{1}, c_{2}, c_{3}; however $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.
(15) Let v_{1}, v_{2}, and v_{3} be vectors in \mathbb{R}^{n} and M be an $n \times n$ matrix. Suppose the vectors v_{1}, v_{2}, v_{3} are linearly independent. Do the vectors $M v_{1}, M v_{2}, M v_{3}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

Answer: NO! Here is an example.

$$
M=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

It is clear that v_{1}, v_{2}, v_{3} are linearly independent. It is also clear that

$$
M v_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad M v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad M v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

are linearly dependent because

$$
1 M v_{1}+0 M v_{2}+0 M v_{3}=0
$$

is a non-trivial linear combination of $M v_{1}, M v_{2}, M v_{3}$ which is equal to 0 .
(16) Let v_{1}, v_{2}, and v_{3} be vectors in \mathbb{R}^{n} and M be a nonsingular $n \times n$ matrix. Suppose the vectors v_{1}, v_{2}, v_{3} are linearly independent. Do the vectors $M v_{1}$, $M v_{2}, M v_{3}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

Answer: The vectors $M v_{1}, M v_{2}, M v_{3}$ are linearly independent.

Proof. Suppose c_{1}, c_{2}, c_{3} are numbers with

$$
c_{1} M v_{1}+c_{2} M v_{2}+c_{3} M v_{3}=0
$$

Use the property of scalars and the fact that matrix multiplication distributes over addition to see that

$$
M\left(c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right)=0
$$

The matrix M is nonsingular; hence, the only vector w with $M w=0$ is $w=0$. Thus, $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. On the other hand, the vectors v_{1}, v_{2}, v_{3} are linearly independent. It follows that c_{1}, c_{2}, c_{3} must all be zero. We have proven that $M v_{1}, M v_{2}, M v_{3}$ are linearly independent.
(17) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 nonsingular matrices, then $A+B$ is a nonsingular matrix.

Answer: Of course the statement is false. Here is an example. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

It is clear that A and B are both non-singular matrices, but

$$
A+B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

is a singular matrix.
(18) True or False. If the statement is true, then prove it. If the statement is false, then give a counterexample. If A and B are singular 2×2 matrices, then $A+B$ is a singular matrix.
Answer: Of course the statement is false. Here is an example. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

It is clear that A and B are both singular matrices, but

$$
A+B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

is a non-singular matrix.
(19) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 nonsingular matrices, then $A B$ is a nonsingular matrix.
Answer: The statement is true. We prove it. We show that if v is a vector in \mathbb{R}^{2} with $(A B) v=0$, then $v=0$.

Suppose $(A B) v=0$. Matrix multiplication associates. It follows that $A(B v)=0$. The matrix A is nonsingular, thus $B v$ must be zero. The matrix B is nonsingular, thus v must be zero.
(20) Find the inverse of

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Answer: Apply Gaussian elimination to

$$
\left[\begin{array}{lll|lll}
2 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Exchange rows 1 and 3 to obtain:

$$
\left[\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Replace Row 3 with Row 3 minus 2 times row 1 to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & -2
\end{array}\right]
$$

Multiply Row 3 by -1 to obtain

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 2
\end{array}\right]
$$

Replace row 1 with row 1 minus row 3 :

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 2
\end{array}\right]
$$

So,

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

Check:

$$
\begin{gathered}
A A^{-1}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } \\
A^{-1} A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

(21) Let $A=\left[\begin{array}{lll}1 & 4 & 2 \\ 0 & 2 & 1 \\ 3 & 5 & 3\end{array}\right]$. Find A^{-1}.

Answer:Apply Gaussian elimination to

$$
\left[\begin{array}{lll|lll}
1 & 4 & 2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right]
$$

Replace Row 3 with Row 3 minus 3 times Row 1 to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 4 & 2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
0 & -7 & -3 & -3 & 0 & 1
\end{array}\right]
$$

Multiply Row 2 by $1 / 2$ to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 4 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & -7 & -3 & -3 & 0 & 1
\end{array}\right] .
$$

Replace Row 1 by Row 1 minus 4 times Row 2 and replace Row 3 by Row 3 plus 7 times Row 2 to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -2 & 0 \\
0 & 1 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & -3 & 7 / 2 & 1
\end{array}\right] .
$$

Multiply Row 3 by 2 to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -2 & 0 \\
0 & 1 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & -6 & 7 & 2
\end{array}\right] .
$$

Replace Row 2 by Row 2 minus $1 / 2$ Row 3 to obtain:

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -2 & 0 \\
0 & 1 & 0 & 3 & -3 & -1 \\
0 & 0 & 1 & -6 & 7 & 2
\end{array}\right]
$$

Thus,

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & -3 & -1 \\
-6 & 7 & 2
\end{array}\right]
$$

Check: We compute

$$
A A^{-1}=\left[\begin{array}{lll}
1 & 4 & 2 \\
0 & 2 & 1 \\
3 & 5 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & -3 & -1 \\
-6 & 7 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
A^{-1} A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & -3 & -1 \\
-6 & 7 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 2 \\
0 & 2 & 1 \\
3 & 5 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(22) Which numbers a make $A=\left[\begin{array}{ll}1 & 2 \\ 2 & a\end{array}\right]$ non-singular? Explain.

Answer: The matrix A is non-singular if the only column vector x with $A x=0$ is the zero column vector. We solve $A x=0$ and interpret our answer. We apply Gaussian Elimination to $\left[\begin{array}{ll}1 & 2 \\ 2 & a\end{array}\right]$. (In our heads we store the augmented column which consists entirely of zeros throughout the entire calculation!) Replace Row 2 with Row 2 minus 2 times Row 1 to get $\left[\begin{array}{cc}1 & 2 \\ 0 & a-4\end{array}\right]$. This is far enough. If $a-4$ is equal to zero, then $A x=0$ has an infinite number of solutions. On the other hand, if $a-4$ is not equal to zero, then the present matrix shows us that x_{2} must be zero and then x_{1} must be zero.

The matrix A is non-singular for every choice of a, except $a=4$.
Instructions 0.1. In each of problems (23) to (41), decide if W is a vector space. If W is a vector space, explain why. (Whenever possible exhibit W as the null space and/or column space of some matrix.) If W is not a vector space, explain why.
(23) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}=2 x_{2}\right\}$.

Answer:

The set W IS a vector space. Indeed, W is the column space of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Also, W is the null space of $\left[\begin{array}{ll}1 & -2\end{array}\right]$.
(24) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}-x_{2}=2\right\}$.

Answer: This W is not a vector space. Indeed, W is not closed under addition because

$$
v_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{c}
0 \\
-2
\end{array}\right]
$$

are in W, but $v_{1}+v_{2}$ is not in W.
(25) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}=x_{2}\right.$ or $\left.x_{1}=-x_{2}\right\}$

Answer: This W is not a vector space. Indeed, W is not closed under addition because

$$
v_{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

are in W, but $v_{1}+v_{2}$ is not in W.
(26) The instructions are given in 0.1. Let

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1} \text { and } x_{2} \text { are rational numbers }\right\} .
$$

Answer: This W is not a vector space (in our class). Indeed, W is not closed under scalar multiplication:

$$
v=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

is in W but πv is not in W.
(27) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}=0\right\}$.

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Also, this W is also the null space of $\left[\begin{array}{ll}1 & 0\end{array}\right]$.
(28) The instructions are given in 0.1. Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]| | x_{1}\left|+\left|x_{2}\right|=0\right\}\right.$

Answer: This set W IS a vector space. Indeed, this set W consists of exactly one vector, namely $W=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$. Thus, W is the null space of the identity matrix.
(29) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}^{2}+x_{2}=1\right\}$.

Answer: This W is not a vector space. Indeed, $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in W, but $v+v$ is not in W.
(30) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1} x_{2}=0\right\}$

Answer: This W is not a vector space. Indeed

$$
v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

are both in W, but $v_{1}+v_{2}$ is not in W.
(31) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{3}=2 x_{1}-x_{2}\right\}$.

Answer: This W is a vector space; indeed W is the column space of

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
2 & -1
\end{array}\right] .
$$

This W is also the null space of $\left[\begin{array}{lll}2 & -1 & -1\end{array}\right]$.
(32) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{2}=x_{3}+x_{1}\right\}$

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]$. This W is also the null space of $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]$.
(33) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1} x_{2}=x_{3}\right\}$.

Answer: This W is not a vector space. Indeed,

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

are both in W, but $v_{1}+v_{2}$ is not in W.
(34) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1}=2 x_{3}\right\}$.

Answer: This W is a vector space. This W is the column space of $\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$. Also, this W is also the null space of $\left[\begin{array}{lll}1 & 0 & -2\end{array}\right]$.
(35) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1}^{2}=x_{1} x_{2}\right\}$.

Answer: This W is not a vector space. Indeed,

$$
v_{1}=\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

are both in W, but $v_{1}+v_{2}$ is not in W.
(36) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{2}=0\right\}$.

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]$. This W is also the null space of $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$.
(37) The instructions are given in 0.1 . Let

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}=2 x_{3} \text { and } x_{2}=-x_{3}\right\} .
$$

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$. This W is also the null space of $\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right]$.
(38) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{3}=x_{2}=2 x_{1}\right\}$.

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. This W is also the null space of $\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & -1 & 0\end{array}\right]$.
(39) The instructions are given in 0.1. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{2}=x_{3}=0\right\}$.

Answer: This W is a vector space. Indeed, this W is the column space of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. This W is also the null space of $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(40) Let u be a fixed vector in \mathbb{R}^{3}. The instructions are given in 0.1 . Let

$$
W=\left\{x \in \mathbb{R}^{3} \mid u^{\mathrm{T}} x=0\right\}
$$

Answer: This W is a vector space. Indeed, this W is the null space of u^{T}.
(41) The instructions are given in 0.1 . Let a and b be fixed vectors in \mathbb{R}^{3}. Consider

$$
W=\left\{x \in \mathbb{R}^{3} \mid a^{\mathrm{T}} x=0 \quad \text { and } \quad b^{\mathrm{T}} x=0\right\} .
$$

Answer: This W is a vector space. Indeed, this W is the null space of

$$
\left[\begin{array}{c}
a^{\mathrm{T}} \\
b^{\mathrm{T}}
\end{array}\right]
$$

(42) Let \mathbb{V} be a vector space; let U and V be subspaces of \mathbb{V}; and let

$$
W=\{w \in \mathbb{V} \mid w=u+v \text { for some } u \in U \text { and } v \in V\}
$$

Is W a vector space? Justify your answer completely.
Answer: This W is a vector space.
The set W is closed under addition. Take w_{1} and w_{2} from W. Well, $w_{1}=u_{1}+v_{1}$ and $w_{2}=u_{2}+v_{2}$ for some $u_{i} \in U$ and $v_{i} \in V$. We see that

$$
w_{1}+w_{2}=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right) ;
$$

furthermore, $u_{1}+u_{2} \in U$ because U is a vector space and $v_{1}+v_{2}$ is in V because V is a vector space. We conclude that $w_{1}+w_{2}$ is equal to an element of U plus an element of V; and therefore, $w_{1}+w_{2}$ is in W.

The set W is closed under scalar multiplication. Take $w_{1}=u_{1}+v_{1} \in W$, as above, and $r \in \mathbb{R}$. We see that $r w_{1}=r u_{1}+r v_{1}$. The vector space U is closed under scalar multiplication; so, $r u_{1}$ is in U. Also, $r v_{1}$ is in V again because V is a vector space. Once again $r w_{1}$ has the correct form; that is $r w_{1}$ is equal to an element of U plus an element of V; therefore, $r w_{1}$ is in W.

The zero vector in \mathbb{V} is equal to the zero vector of U plus the zero vector of V; and therefore, the zero vector is in W.
(43) Let \mathbb{V} be a vector space; let U and V be subspaces of \mathbb{V}; and let W be the intersection of U and V. In other words,

$$
W=\{w \in \mathbb{V} \mid w \in U \quad \text { and } \quad w \in V\} .
$$

Is W a vector space? Justify your answer completely.
Answer: The set W is a vector space.
The set W is closed under addition. Take w_{1} and w_{2} from W. Well, w_{1} and w_{2} are both in U and U is a vector space. Hence U is closed under addition; so $w_{1}+w_{2}$ is also in U. Similarly, w_{1} and w_{2} are both in V and V is a vector space. Hence V is closed under addition; so $w_{1}+w_{2}$ is also in V. We have shown that $w_{1}+w_{2}$ is in W.

The set W is closed under scalar multiplication. Take $w \in W$ and $r \in \mathbb{R}$. The vector space U is closed under scalar multiplication; so, $r w$ is in U. Also, $r w$ is in V again because V is a vector space. Thus $r w$ is in both U and V; hence, $r w$ is in W.

The zero vector in \mathbb{V} is in U and V because U and V are subspaces of \mathbb{V}. Thus this zero vector is in the intersection of U and V, which is W.
(44) Let \mathbb{V} be a vector space; let U and V be subspaces of \mathbb{V}; and let W be the union of U and V. In other words,

$$
W=\{w \in \mathbb{V} \mid w \in U \quad \text { or } \quad w \in V\} .
$$

Is W a vector space? Justify your answer completely.
Answer: The set W does is not always a vector space. Let U be the null space of $\left[\begin{array}{ll}1 & 0\end{array}\right]$ and V be the null space of $\left[\begin{array}{ll}0 & 1\end{array}\right]$. We see that $u=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in U and $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is V. Thus, u and v are both in W, but $u+v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is not in either U or V; hence $u+v$ is not in W.
(45) Let W be the set of all continuous functions $f(x)$ defined on the closed interval $[0,1]$ with the property that $\int_{0}^{1} f(x) d x=0$. Is W a vector space? Explain.
Answer: Yes, this set W is a vector space. We saw in class that the set of all continuous functions defined on the closed interval $[0,1]$ is the vector space denoted $\mathscr{C}[0,1]$. The set W is a subset of W. To verify that W is a vector space, we need only check that W satisfies the three closure properties.

The set W is closed under addition:

Take f and g in W. Observe that

$$
\int_{0}^{1}(f+g)(x) d x=\int_{0}^{1}(f(x)+g(x)) d x \quad \text { This is the meaning of adding functions. }
$$

$$
\begin{array}{ll}
\left.=\int_{0}^{1} f(x) d x+\int_{0}^{1} g(x)\right) d x & \text { This is a property of integration. } \\
=0+0=0, & \text { because } f \text { and } g \text { are in } W .
\end{array}
$$

Thus, $f+g$ is in W.

The set W is closed under scalar multiplication:

Take $f \in W$ and $r \in \mathbb{R}$. Observe that

$$
\begin{aligned}
\int_{0}^{1}(r f)(x) d x & =\int_{0}^{1} r(f(x)) d x & & \text { This is the meaning of } r f \\
& =r \int_{0}^{1}(f(x)) d x & & \text { This is a property of integrals. } \\
& =r(0)=0, & & \text { because } f \text { is in } W .
\end{aligned}
$$

The zero function is in W because $\int_{0}^{1} 0 d x=0$.
(46) Let W be the set of all twice differentiable functions $f(x)$ with the property that $f^{\prime \prime}(x)+f(x)=e^{x}$. Is W a vector space? Explain.
Answer: Of course, W is not a vector space. The function $g(x)=\frac{1}{2} e^{x}$ is in W; but $2 g(x)$ is not in W.
(47) Let W be the set of 2×2 matrices whose determinant is zero. Is W a vector space? Explain thoroughly.
Answer: No, W is not a vector space. The matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are in W, but their sum, which is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, is not in W.
(48) Let V be the set of non-singular 2×2 matrices. Is V a vector space? Explain your answer, thoroughly.

Answer: NO. The set V is not closed under addition. The matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

are both in V; but the sum $A+B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not in V.
(49) Let V be the vector space of 3×3 skew symmetric matrices. Find a basis for V. Prove that your answer is correct. Recall that the matrix M is skewsymmetric if $M^{\mathrm{T}}=-M$.

Answer: The matrices
$M_{1}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right], \quad$ and $\quad M_{3}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$
are a basis for V.

The matrices M_{1}, M_{2}, M_{3} are linearly independent. Indeed, if c_{1}, c_{2}, and c_{3} are numbers with

$$
c_{1} M_{1}+c_{2} M_{2}+c_{3} M_{3}
$$

equal to the zero matrix, then

$$
\left[\begin{array}{ccc}
0 & c_{1} & c_{2} \\
-c_{1} & 0 & c_{3} \\
-c_{2} & -c_{3} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and $c_{1}=c_{2}=c_{3}=0$.
The matrices M_{1}, M_{2}, M_{3} span V. Indeed, a typical element of V looks like

$$
M=\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]
$$

and $M=a M_{1}+b M_{2}+c M_{3}$.
(50) Let \mathscr{P}_{4} be the vector space of polynomials of degree at most 4 and let W be the following subspace of \mathscr{P}_{4} :

$$
W=\left\{p(x) \in \mathscr{P}_{4} \mid p(1)+p(-1)=0 \quad \text { and } \quad p(2)+p(-2)=0\right\}
$$

Find a basis for W.
Answer: Every element of W has the form

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

where

$$
\left\{\begin{array}{l}
p(1)+p(-1)=0 \\
p(2)+p(-2)=0
\end{array}\right.
$$

In other words,
$\left\{\begin{array}{c}\left(a_{0}+a_{1}+a_{2}+a_{3}+a_{4}\right)+\left(a_{0}-a_{1}+a_{2}-a_{3}+a_{4}\right)=0 \\ \left(a_{0}+2 a_{1}+4 a_{2}+8 a_{3}+16 a_{4}\right)+\left(a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4}\right)=0\end{array}\right.$
In other words,

$$
\left\{\begin{array}{c}
2 a_{0}+2 a_{2}+2 a_{4}=0 \\
2 a_{0}+8 a_{2}+32 a_{4}=0
\end{array}\right.
$$

In other words,

$$
\left\{\begin{array}{c}
a_{0}+a_{2}+a_{4}=0 \\
a_{0}+4 a_{2}+16 a_{4}=0
\end{array}\right.
$$

Subtract Eq1 from Eq2 to get:

$$
\begin{aligned}
& \left\{\begin{array}{r}
a_{0}+a_{2}+a_{4}=0 \\
3 a_{2}+15 a_{4}=0
\end{array}\right. \\
& \left\{\begin{array}{r}
a_{0}+a_{2}+a_{4}=0 \\
a_{2}+5 a_{4}=0
\end{array}\right.
\end{aligned}
$$

Subtract equation 2 from Eq1:

$$
\left\{\begin{array}{l}
a_{0}-4 a_{4}=0 \\
a_{2}+5 a_{4}=0
\end{array}\right.
$$

So a_{1}, a_{3}, a_{4} are free variables and the value of a_{0} and a_{2} is determined by the value of the free variables: $a_{0}=4 a_{4}$ and $a_{2}=-5 a_{4}$. So every element of W has the form $a_{1} x+a_{3} x^{3}+a_{4}\left(4-5 x^{2}+x^{4}\right)$. The polynomials $x, x^{3}, 4-5 x^{2}+x^{4}$ span W and are linearly independent; they form a basis for W. By the way, $4-5 x^{2}+x^{4}$ vanishes at $1,-1,2,-2$.
(51) The trace of the square matrix A is the sum of the numbers on its main diagonal. Let V be the set of all 3×3 matrices with trace 0 . The set V is a vector space. You do NOT have to prove this. Give a basis for V. Prove that your proposed basis really is a basis.

Answer: The matrices

$$
\begin{gathered}
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right], \quad M_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
M_{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{5}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{6}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \\
M_{7}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad M_{8}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

are are a basis for V.
The proposed basis in linearly independent. If c_{1}, \ldots, c_{8} are numbers with $\sum_{i=1}^{8} c_{i} M_{i}$ equal to the zero matrix, then

$$
\left[\begin{array}{ccc}
c_{1}+c_{2} & c_{3} & c_{4} \\
c_{5} & -c_{1} & c_{6} \\
c_{7} & c_{8} & -c_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

hence all eight c 's are zero.
The proposed basis spans V. A typical element of V looks like

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right],
$$

where $a_{11}+a_{22}+a_{33}=0$. Observe that
$A=-a_{22} M_{1}-a_{33} M_{2}+a_{12} M_{3}+a_{13} M_{4}+a_{21} M_{5}+a_{23} M_{6}+a_{31} M_{7}+a_{32} M_{8}$.
(52) Let W be the set of polynomials $p(x)$ of degree at most three with $p(0)=2$. Is W a vector space? Explain thoroughly.

Answer: No, W is not a vector space. The polynomial $p(x)=2$ is in W but the polynomial $3 p(x)$, which is the constant polynomial 6 , is not in W.
(53) Let W be the vector space of polynomials $p(x)$ of degree at most three with $p(2)=0$. Give a basis for W. Prove that your answer is correct.

Answer: The polynomials

$$
p_{1}(x)=x-2, \quad p_{2}(x)=(x-2)^{2}, \quad \text { and } \quad p_{3}(x)=(x-2)^{3}
$$

are a basis for W.
The proposed basis in linearly independent. Suppose c_{1}, c_{2}, c_{3} are constants and $c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)$ is the zero polynomial. The derivative of the zero polynomial is the zero polynomial. Take the derivative of both sides of

$$
c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)=\text { the zero polynomial }
$$

to get

$$
\begin{equation*}
c_{1}+2 c_{2}(x-2)+3 c_{3}(x-2)^{2}=\text { the zero polynomial. } \tag{0.1.1}
\end{equation*}
$$

Plug in $x=2$ to learn that $c_{1}=0$. Take the derivative of (0.1.1) to obtain

$$
\begin{equation*}
2 c_{2}+6 c_{3}(x-2)=\text { the zero polynomial. } \tag{0.1.2}
\end{equation*}
$$

Plug in $x=2$ to see that $c_{2}=0$. Take the derivative of (0.1.2) to obtain

$$
6 c_{3}=\text { the zero polynomial. }
$$

Conclude that all three c 's must be zero.
The proposed basis spans W. Every polynomial of degree three or less can be written in the form

$$
\begin{equation*}
p(x)=a_{0}+a_{1}(x-2)+a_{2}(x-2)^{3}+a_{3}(x-2)^{3} . \tag{0.1.3}
\end{equation*}
$$

Indeed, if $q(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}$ is a normal looking polynomial of degree three or less, then

$$
\begin{equation*}
q(x)=b_{0}+b_{1}((x-2)+2)+b_{2}((x-2)+2)^{2}+b_{3}((x-2)+2)^{3} . \tag{0.1.4}
\end{equation*}
$$

Expand (0.1.4) to obtain a polynomial in the form of (0.1.3). (Of course, one could also use Taylor's Theorem to write $q(x)$ in the form of (0.1.3).)

At any rate, the polynomial $p(x)$ of $(0.1 .3)$ is in W if and only if

$$
0=p(2)=a_{0} .
$$

Thus, $p(x)$ is in W if and only if $p(x)$ is equal to a linear combination of $p_{1}(x), p_{2}(x)$, and $p_{3}(x)$. Thus, the proposed basis spans V.
(54) Let V be the vector space of all polynomials $p(x)$ of degree three or less which have the property that $p(2)=0$ and $p^{\prime}(2)=0$. Find a basis for V. Explain thoroughly.

Answer: The polynomials

$$
p_{2}(x)=(x-2)^{2}, \quad p_{3}(x)=(x-2)^{3}
$$

are a basis for V.
The proposed basis in linearly independent. We proved in Problem (53) that $p_{2}(x)$ and $p_{3}(x)$ are part of a larger linearly independent set. Thus $p_{2}(x)$ and $p_{3}(x)$ are linearly independent.

The proposed spans V. The vector space V is a subspace of the vector space W of problem (53). Let $p(x)$ be an element of V. So $p(x)$ is in W and $p^{\prime}(2)=0$. Apply (53) to write $p(x)$ in the form

$$
p(x)=c_{1}(x-2)+c_{2}(x-2)^{2}+c_{3}(x-2)^{3} .
$$

It follows that

$$
p^{\prime}(x)=c_{1}+2 c_{2}(x-2)+3 c_{3}(x-2)^{2} \quad \text { and } \quad 0=p^{\prime}(2)=c_{1} .
$$

Thus $p(x)$ is a linear combination of $p_{2}(x)=(x-2)^{2}$ and $p_{3}(x)=(x-2)^{3}$. We have shown that $p_{2}(x), p_{3}(x)$ span V.
(55) Let V be the vector space of symmetric 3×3 matrices. Give a basis for V. Explain your answer.

Answer: One basis for V is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

It is clear that each of the listed matrices is symmetric. It is clear that every 3×3 symmetric matrix is a linear combination of the six listed matrices. It is also clear that the six listed matrices are linearly independent.
(56) Let W be the vector space of 3×3 matrices, V be the subspace of W lower triangular matrices and U be the subspace of W of upper triangular matrices. Give a basis for U, a basis for V, a basis for $U \cap V$ and a basis for $U+V$. (Recall that the matrix M from W is upper triangular if $M_{i, j}=0$ when $j<i$ and M is lower triangular if $M_{i, j}=0$ when $i<j$ for the vector spaces of upper and lower triangular matrices.) (The symbols $U \cap V$ and $U+V$ are defined in Problem 62.)

Answer: Let

$$
\begin{aligned}
& E_{11}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& E_{12}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& E_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& E_{21}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& E_{22}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& E_{23}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \\
& E_{31}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \\
& E_{32}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \text { and } \\
& E_{33}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

Observe that

- $E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}$ is a basis for U
- $E_{11}, E_{21}, E_{31}, E_{22}, E_{32}, E_{33}$ is a basis for V
- E_{11}, E_{22}, E_{33} is a basis for $U \cap V$, and
- $E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}, E_{31}, E_{32}, E_{33}$ is a basis for $U+V$.

Indeed the following statements hold.

- Each matrix $E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}$ is in U.
- The matrices $E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}$ are linearly independent.
- The matrices $E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}$ span U.
- Each matrix $E_{11}, E_{21}, E_{31}, E_{22}, E_{32}, E_{33}$ is in V.
- The matrices $E_{11}, E_{21}, E_{31}, E_{22}, E_{32}, E_{33}$ are linearly independent.
- The matrices $E_{11}, E_{21}, E_{31}, E_{22}, E_{32}, E_{33}$ span V.
- Each matrix E_{11}, E_{22}, E_{33} is in $U \cap V$.
- The matrices E_{11}, E_{22}, E_{33} are linearly independent.
- The matrices E_{11}, E_{22}, E_{33} span $U \cap V$.
- Each matrix $E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}, E_{31}, E_{32}, E_{33}$ is in $U+V$.
- The matrices $E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}, E_{31}, E_{32}, E_{33}$ are linearly independent.
- The matrices $E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}, E_{31}, E_{32}, E_{33}$ span $U+V$.
(57) Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) Express each column of A in terms of your answer to (b).
(e) Express each row of A in terms of your answer to (c).

Answer:

We apply Gaussian Elimination to the matrix A.
Replace Row 2 with Row 2 minus Row 1;
replace Row 3 with Row 3 minus 2 times Row 1; and
replace Row 4 with Row 4 minus 2 times Row 1 to obtain

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & -1 & -2
\end{array}\right]
$$

Exchange rows 2 and 3 to obtain

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 1 & 3 \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & -1 & -1 & -2
\end{array}\right] .
$$

Replace Row 1 with Row 1 plus Row 2 and replace Row 4 with Row 4 minus Row 2 to obtain

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 0 & 1 & 2 \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 & -1
\end{array}\right] .
$$

Replace Row 1 with Row 1 plus Row 3 and replace Row 4 with Row 4 minus Row 3
to obtain

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Multiply rows 2 and 3 by -1 to obtain

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

are a basis for the column space of A. Notice that I am writing $A_{*, j}$ for column j of the matrix A.

The vectors

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1 \\
z_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
z_{3}
\end{array}\right] \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

are a basis for the row space of A.
We see that

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 6}=A_{*, 1}+A_{*, 4}+A_{*, 5}
$$

I write $A_{i, *}$ for row i of A. We see that

$$
\begin{aligned}
& A_{1, *}=z_{1}+z_{2}+z_{3}, \\
& A_{2, *}=2 z_{1}+2 z_{2}+z_{3}, \\
& A_{3, *}=2 z_{1}+z_{2}+2 z_{3}, \\
& A_{4, *}=2 z_{1}+z_{2}+z_{3} .
\end{aligned}
$$

(58) Let $U \subseteq V$ be vector spaces. Is it always true that $\operatorname{dim} U \leq \operatorname{dim} V$? If yes, prove your answer. If no, give an example.

Answer: YES. Every basis for U is a linearly independent set in U; hence, every basis for U is a linearly independent set in V. One of the dimension theorems says that every linearly independent subset of a vector space V may be extended to become a basis for V. Thus, $\operatorname{dim} U \leq \operatorname{dim} V$.
(59) Suppose that $V \subseteq W$ are vector spaces and w_{1}, w_{2}, w_{3} is a basis for W. Suppose further that w_{1} and w_{2} are in V, but w_{3} is not in V. Do you have enough information to know the exact value of $\operatorname{dim} V$? If yes, prove it. If no, then give enough examples to show that $\operatorname{dim} V$ has not yet been determined.

Answer: We know that $\operatorname{dim} V=2$. Indeed, w_{1} and w_{2} are linearly independent vectors in V; so w_{1} and w_{2} is the beginning of a basis for V and $\operatorname{dim} V \geq 2$. The only three dimensional subspace of W is all of W. Thus, $\operatorname{dim} V \leq 2$, and indeed, $\operatorname{dim} V=2$.
(60) Suppose that $V \subseteq W$ are vector spaces and $w_{1}, w_{2}, w_{3}, w_{4}$ is a basis for W. Suppose further that w_{1} and w_{2} are in V, but neither w_{3} nor w_{4} is not in V. Do you have enough information to know the exact value of $\operatorname{dim} V$? If yes, prove it. If no, then give enough examples to show that $\operatorname{dim} V$ has not yet been determined.

Answer: NO! Let $W=\mathbb{R}^{4}$ and

$$
w_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad w_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- In our first example we take V to be spanned by w_{1} and w_{2}. In this case, $\operatorname{dim} V=2$.
- In our second example we take V to be spanned by w_{1}, w_{2}, and $w_{3}+w_{4}$. In this case, $\operatorname{dim} V=3$ and neither w_{3} nor w_{4} is in V !
(61) Let $U \subseteq V \subseteq W$ be vector spaces. Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for W. Suppose further that v_{1}, v_{2}, v_{3} are in V, but v_{4} is not in V. Suppose finally, that v_{1} and v_{2} are in U, but v_{3} and v_{4} are not in U. What is the dimension of U ? Prove your answer.

Answer: The dimension of U is 2 . The vector space V is a proper subspace of the four dimensional vector space W (so $\operatorname{dim} V \leq 3$); furthermore V contains 3 linearly independent vectors; hence, $\operatorname{dim} V=3$. The vector space U is a proper subspace of the three dimensional vector space V (so $\operatorname{dim} U \leq 2$); furthermore U contains 2 linearly independent vectors; hence, $\operatorname{dim} U=2$.
(62) Let U and V be finite dimensional subspaces of the vector space W. Recall that $U \cap V$ and $U+V$ are the vector spaces

$$
U \cap V=\{w \in W \mid w \in U \text { and } w \in V\} \quad \text { and }
$$

$$
U+V=\{w \in W \mid \text { there exists } u \in U \text { and } v \in V \text { with } w=u+v\}
$$

Give a formula which relates the following vector space $\operatorname{dimensions} \operatorname{dim} U$, $\operatorname{dim} V, \operatorname{dim}(U \cap V)$ and $\operatorname{dim}(U+V)$. Prove your formula.

Answer:

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)
$$

Let $a=\operatorname{dim} U, b=\operatorname{dim} V$, and $c=\operatorname{dim} U \cap V$. We will exhibit a basis of $U+V$ which contains exactly $a+b-c$ vectors. Let z_{1}, \ldots, z_{c} be a basis for $U \cap V$. (Every basis for $U \cap V$ has c elements.) The vectors z_{1}, \ldots, z_{c} are linearly independent vectors in U. Every linearly independent subset of U is part of a basis for U. Furthermore, every basis for U has a elements. Thus there are elements u_{c+1}, \ldots, u_{a} in U so that

$$
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}
$$

is a basis for U.
Similarly, every linearly independent subset of V is part of a basis for V. Furthermore, every basis for V has b elements. Thus there are elements v_{c+1}, \ldots, v_{b} in V so that

$$
z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{b}
$$

is a basis for V.
We finish the proof by proving that

$$
\begin{equation*}
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}, v_{c+1}, \ldots, v_{b} \tag{0.1.5}
\end{equation*}
$$

is a basis for $U+V$. (Once we have shown that (0.1.5) is a basis for $U+V$, then we will have shown that $\operatorname{dim} U+V=c+(a-c)+(b-c)=a+b-c$, as expected.)

We show that the vectors (0.1.5) are linearly independent. Suppose

$$
A_{1}, \ldots, A_{c}, B_{c+1}, \ldots, B_{a}, C_{c+1}, \ldots, C_{b}
$$

are numbers with

$$
\sum_{i=1}^{c} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}+\sum_{k=c+1}^{b} C_{k} v_{k}=0 .
$$

Observe that

$$
\begin{equation*}
\sum_{i=1}^{C} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}=-\sum_{k=c+1}^{b} C_{k} v_{k} \tag{0.1.6}
\end{equation*}
$$

is an element of $U \cap V$. The vectors z_{1}, \ldots, z_{c} are a basis for $U \cap V$; hence there are numbers D_{1}, \ldots, D_{c} with

$$
\sum_{i=1}^{c} D_{i} z_{i}=-\sum_{k=c+1}^{b} C_{k} v_{k}
$$

However, the vectors $z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{k}$ are a basis for V; thus, the vectors

$$
z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{k}
$$

are linearly independent and $D_{1}=\ldots, D_{c}=C_{1}=\cdots=C_{b}=0$. At this point (0.1.6) reads

$$
\sum_{i=1}^{c} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}=0
$$

However the vectors $z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}$ are a basis for U; thus,

$$
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}
$$

are linearly independent and

$$
A_{1}=\cdots=A_{c}=B_{c+1}=\cdots=B_{a}=0
$$

We have shown that the vectors (0.1.5) are linearly independent.
Finally, we show that the vectors (0.1.5) span $U+V$. Let w be an arbitrary element of $U+V$. It follows that $w=u+v$ for some $u \in U$ and some $v \in V$. Write u in terms of the basis $z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}$ for U. Write v in terms of the basis $z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{b}$ for V. Observe that you have written $w=u+v$ in terms of (0.1.5).
(63) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ \sin y\end{array}\right]$. Is T a linear transformation? Explain.
Answer: NO! Observe that

$$
T\left(\left[\begin{array}{c}
0 \\
\pi / 2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

but

$$
T\left(2\left[\begin{array}{c}
0 \\
\pi / 2
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
0 \\
\pi
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \neq 2 T\left(\left[\begin{array}{c}
0 \\
\pi / 2
\end{array}\right]\right)
$$

(64) Let V be the vector space of all differentiable real-valued functions which are defined on all of \mathbb{R}. Let W be the vector space of all real-valued functions which are defined on all of \mathbb{R}. Let T from V to W be the function which is given by $T(f(x))=f^{\prime}(x)$. Is T a linear transformation? Explain very thoroughly.

Answer: YES We learned in calculus that $(f+g)^{\prime}=f^{\prime}+g^{\prime}$. We also learned in calculus that $(r f)^{\prime}=r f^{\prime}$.
(65) Is the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, which is defined by

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
-x_{1}+3 x_{2}-2 x_{3}
\end{array}\right]
$$

a linear transformation? If so, explain why. If not, give an example to show that one of the rules of linear transformation fails to hold.

Answer: YES Observe that

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=M\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],
$$

where M is the matrix

$$
M=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 3 & -2
\end{array}\right] .
$$

Now apply Example 10.2.(a) from the class notes.
(66) Is the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which is defined by

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2}
\end{array}\right],
$$

a linear transformation? If so, explain why. If not, give an example to show that one of the rules of linear transformation fails to hold.

Answer: NO! Observe that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

but

$$
T\left(2\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \neq 2 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

(67) True or False. (If true, give a proof. If false, give a counter example.) If v_{1}, v_{2}, v_{3} are linearly dependent vectors in \mathbb{R}^{4} and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly dependent vectors in \mathbb{R}^{4}.

Answer: TRUE! If v_{1}, v_{2}, v_{3} are linearly dependent vectors, then there are numbers c_{1}, c_{2}, and c_{3}, not all zero with

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 .
$$

Apply the linear transformation T to both sides and use the defining properties of linear transformation to see that

$$
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)=0 .
$$

At least one of the c 's remains non-zero. We conclude that $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ are linearly dependent.
(68) Yes or No. Let v_{1}, v_{2}, v_{3} be vectors in \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Suppose that $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in \mathbb{R}^{m}. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove it. If no, give an example.

Answer: YES! Suppose $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. Apply the linear transformation T and use the fact that T is a linear transformation to see that $c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)=0$. The vectors $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent; hence, $c_{1}=c_{2}=c_{3}=0$ and v_{1}, v_{2}, v_{3} are linearly independent.
(69) True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in the vector space V and $T: V \rightarrow W$ is a linear transformation of vector spaces, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in the vector space W.
Answer: False Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ which is multiplication by $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

We see that v_{1}, v_{2}, and v_{3} are linearly independent in \mathbb{R}^{3}, but $T\left(v_{1}\right), T\left(v_{2}\right)$, $T\left(v_{3}\right)$ are linearly dependent in \mathbb{R}.
(70) Suppose that $T: \mathscr{P}_{2} \rightarrow \mathscr{P}_{4}$ is a linear transformation, where $T(1)=x^{4}$, $T(x+1)=x^{3}-2 x$, and $T\left(x^{2}+2 x+1\right)=x$. Find $T\left(x^{2}+5 x-1\right)$.

Answer: Observe that $x^{2}+5 x-1=\left(x^{2}+2 x+1\right)+3(x+1)-5(1)$; so

$$
\begin{gathered}
T\left(x^{2}+5 x-1\right)=T\left(x^{2}+2 x+1\right)+3 T(x+1)-5 T(1) \\
\quad=x+3\left(x^{3}-2 x\right)-5 x^{4}=-5 x^{4}+3 x^{3}-5 x
\end{gathered}
$$

(71) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}5 \\ 3\end{array}\right]\right)$.
Answer: I see that $\left[\begin{array}{l}5 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}1 \\ 0\end{array}\right]$. It follows that

$$
T\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right)=T\left(3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=3 T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+2 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

$$
=3\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
8 \\
13 \\
9
\end{array}\right] .
$$

(72) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
5
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
6 \\
7
\end{array}\right]
$$

Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}.
Answer: We see that $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$. The function T is a linear transformation; hence,

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\frac{1}{2}\left[T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)\right]=\frac{1}{2}\left(\left[\begin{array}{l}
4 \\
5
\end{array}\right]+\left[\begin{array}{l}
6 \\
7
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

and
$T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\frac{1}{2}\left[T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)-T\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)\right]=\frac{1}{2}\left(\left[\begin{array}{l}4 \\ 5\end{array}\right]-\left[\begin{array}{l}6 \\ 7\end{array}\right]\right)=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$
and

$$
M=\left[\begin{array}{ll}
5 & -1 \\
6 & -1
\end{array}\right] .
$$

(73) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $y=\sqrt{3} x$. Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}.
Answer: The line $y=\sqrt{3} x$ makes the angle $\theta=\frac{\pi}{3}$ with the x-axis. (If need be draw the right triangle with base 1 and height $\sqrt{3}$. The hypotenuse is 2 . So the angle of inclination, θ, has $\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{1}{2}$ and $\sin \theta=\frac{\mathrm{op}}{\text { hyp }}=\frac{\sqrt{3}}{2}$. Thus $\theta=\frac{\pi}{3}$.) It follows that

$$
M=\left[\begin{array}{cc}
\cos \frac{2 \pi}{3} & \sin \frac{2 \pi}{3} \\
\sin \frac{2 \pi}{3} & -\cos \frac{2 \pi}{3}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] .
$$

The best check is to make sure that $M v=v$ for some vector on $y=\sqrt{3} x$ (like for example $v=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$); and $M w=-w$ for some vector perpendicular to $y=\sqrt{3} x$ (like for example $w=\left[\begin{array}{c}\sqrt{3} \\ -1\end{array}\right]$). This happens.
(74) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which fixes the origin and rotates the $x y$-plane counter-clockwise by 45 degrees. Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}.

Answer:

$$
M=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] .
$$

(75) Find the eigenvalues and the eigenvectors of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$.

Answer: We compute

$$
\begin{gathered}
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 3 \\
2 & 2-\lambda
\end{array}\right]=(1-\lambda)(2-\lambda)-6 \\
=\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4) .
\end{gathered}
$$

The eigenvalues of A are $\lambda=-1,4$. The eigenvectors associated to $\lambda=-1$ are in the null space of $A+I=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$. Elementary row operations give $\left[\begin{array}{cc}1 & 3 / 2 \\ 0 & 0\end{array}\right]$. The eigenvectors of A which belong to $\lambda=-1$ are the multiples of $v=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. Check that $A v=-v$. The eigenvectors associated to $\lambda=4$ are in the null space of $A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 2 & -2\end{array}\right]$. Elementary row operations give $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$. The eigenvectors of A which belong to $\lambda=4$ are the multiples of $w=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Check that $A w=4 w$.
(76) Find a matrix B with $B^{2}=A$ for $A=\left[\begin{array}{cc}13 & 18 \\ -6 & -8\end{array}\right]$. I expect you to write down the four entries of B.

Answer: The eigenvalues of A are the solutions of

$$
\begin{gathered}
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
13-\lambda & 18 \\
-6 & -8-\lambda
\end{array}\right] \\
=(13-\lambda)(-8-\lambda)-(18)(-6)=\lambda^{2}-5 \lambda-104+108=\lambda^{2}-5 \lambda+4 \\
=(\lambda-4)(\lambda-1) .
\end{gathered}
$$

The eigenvalues of A are $\lambda=4$ and $\lambda=1$. The eigenspace which belongs to $\lambda=1$ is the null space of

$$
A-I=\left[\begin{array}{cc}
12 & 18 \\
-6 & -9
\end{array}\right]
$$

Divide row 1 by 12 to get $\left[\begin{array}{cc}1 & 3 / 2 \\ -6 & -9\end{array}\right]$. Add 6 copies of row 1 to row 2 to get $\left[\begin{array}{cc}1 & 3 / 2 \\ 0 & 0\end{array}\right]$. The eigenspace of A which belongs to 1 is the set of all vectors x with $x_{1}=-\frac{3}{2} x_{2}$, and x_{2} is arbitrary. The vector $\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ belongs to $\lambda=1$. We check this statement:

$$
A\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{cc}
13 & 18 \\
-6 & -8
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{l}
-39+36 \\
+18-16
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2
\end{array}\right] .
$$

The eigenspace which belongs to $\lambda=4$ is the null space of

$$
A-4 I=\left[\begin{array}{cc}
9 & 18 \\
-6 & -12
\end{array}\right]
$$

Divide row 1 by 9 to get $\left[\begin{array}{cc}1 & 2 \\ -6 & -12\end{array}\right]$. Add six copies of row 1 to row two to get $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. The vector $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ belongs to $\lambda=4$. We check this statement:

$$
\begin{gathered}
A\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{cc}
13 & 18 \\
-6 & -8
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-26+18 \\
12-8
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right] \\
=4\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

We now see that

$$
A\left[\begin{array}{cc}
-3 & -2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$ and $S=\left[\begin{array}{cc}-3 & -2 \\ 2 & 1\end{array}\right]$. We see that $S^{-1}=\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]$, and that $A=S D S^{-1}$. Our answer is

$$
\begin{aligned}
B= & S\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
-3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & -4 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right]=\left[\begin{array}{cc}
5 & 6 \\
-2 & -2
\end{array}\right] \cdot
\end{aligned}
$$

Check:

$$
B^{2}=\left[\begin{array}{cc}
5 & 6 \\
-2 & -2
\end{array}\right]\left[\begin{array}{cc}
5 & 6 \\
-2 & -2
\end{array}\right]=\left[\begin{array}{cc}
13 & 18 \\
-6 & -8
\end{array}\right]=A . \checkmark
$$

(77) Find $\lim _{n \rightarrow \infty} A^{n}$, where $A=\left[\begin{array}{cc}2 & \frac{3}{2} \\ -1 & -\frac{1}{2}\end{array}\right]$.

Answer: This problem would be easy if A were a diagonal matrix. Lets diagonalize A. The eigenvalues of A satisfy

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I)= & (2-\lambda)\left(-\frac{1}{2}-\lambda\right)+\frac{3}{2}=\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2} \\
& =(\lambda-1)\left(\lambda-\frac{1}{2}\right) .
\end{aligned}
$$

The eigenvalues of A are $\lambda=1$ and $\lambda=\frac{1}{2}$. The eigenvectors which belong to $\lambda=1$ are the null space of $A-I=\left[\begin{array}{cc}1 & \frac{3}{2} \\ -1 & -\frac{3}{2}\end{array}\right]$. Replace row 2 by row 2 plus row 1 to get $\left[\begin{array}{ll}1 & \frac{3}{2} \\ 0 & 0\end{array}\right]$. The eigenspace which belongs to $\lambda=1$ is $x_{1}=-\frac{3}{2} x_{2}$
and x_{2} can be anything. The vector $v_{1}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ is a basis for the eigenspace which belongs to $\lambda=1$. By the way

$$
A v_{1}=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-6+3 \\
3-1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=v_{1}
$$

as expected. The eigenspace which belongs to $\lambda=\frac{1}{2}$ is the null space of $A-\frac{1}{2}=\left[\begin{array}{cc}\frac{3}{2} & \frac{3}{2} \\ -1 & -1\end{array}\right]$. Exchange the two rows: $\left[\begin{array}{cc}-1 & -1 \\ \frac{3}{2} & \frac{3}{2}\end{array}\right]$. Replace row 2 by row 2 plus $\frac{3}{2}$ row 1 : $\left[\begin{array}{cc}-1 & -1 \\ 0 & 0\end{array}\right]$. Multiply row 1 by $-1:\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. The eigenspace which belongs to $\lambda=\frac{1}{2}$ is $x_{1}=-x_{2}$ and x_{2} can be anything. The vector $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is a basis for the eigenspace which belongs to $\lambda=\frac{1}{2}$. By the way

$$
A v_{2}=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2+\frac{3}{2} \\
1-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$=\frac{1}{2} v_{2}$, as expected. Now we know that

$$
A\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]
$$

Let

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right], \quad \text { and } \quad S=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]
$$

We calculate that $S^{-1}=\left[\begin{array}{cc}-1 & -1 \\ 2 & 3\end{array}\right]$. We saw that $A S=S D$. It follows that $A=S D S^{-1}$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A^{n} & =S \lim _{n \rightarrow \infty} D^{n} S^{-1}=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
-2 & -2
\end{array}\right]
\end{aligned}
$$

(78) Express $v=\left[\begin{array}{c}8 \\ 9 \\ 10\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. (It might be helpful to notice that v_{1}, v_{2} and v_{3} are an orthogonal set.)

Answer: Multiply each side of $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$ by v_{1}^{T} to see that $27 v=3 c_{1}$, so $c_{1}=9$. Similar calculations give $-1=2 c_{2}$; so, $c_{2}=-\frac{1}{2}$; and
$-3=6 c_{3}$; so, $c_{3}=-\frac{1}{2}$. We check that

$$
9 v_{1}-\frac{1}{2} v_{2}-\frac{1}{2} v_{3}=9\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
8 \\
9 \\
10
\end{array}\right]=v .
$$

(79) Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 3 & 4 & 5\end{array}\right]$.

Answer: One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let

$$
u_{1}=v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right]-\frac{12}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left(\left[\begin{array}{c}
-20 \\
0 \\
5 \\
0
\end{array}\right]-6\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

We check that $u_{1}^{\mathrm{T}} u_{2}=0$ and $A u_{2}=0$. Let

$$
\begin{gathered}
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{15}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{10}{65}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{2}{13}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]=\frac{1}{26}\left(\left[\begin{array}{c}
-130 \\
0 \\
0 \\
26
\end{array}\right]-39\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-4\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]\right) \\
=\frac{1}{26}\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right]
\end{gathered}
$$

Let

$$
u_{3}=26 u_{3}^{\prime}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right]
$$

Check that $A u_{3}=0, u_{1}^{\mathrm{T}} u_{3}=0$, and $u_{2}^{\mathrm{T}} u_{3}=0$. Our answer is

$$
u_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right] .
$$

