Math 544, Final Exam Summer 2007

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.
There are $\mathbf{9}$ problems on TWO sides. The exam is worth a total of 100 points. Problem 1 is worth 20 points. All of the other problems are worth 10 points each. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

You should KEEP this copy of your exam.
I will post the solutions on my website later today.

1. Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 6 \\ 2 & 2 & 3 & 7 \\ 3 & 4 & 6 & 13 \\ 1 & 2 & 6 & 9\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A as a linear combination of the basis you have chosen for the column space of A. Express each row of A as a linear combination of the basis you have chosen for the row space of A.

Apply Elementary Row Operations to A to obtain

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that the null space of A is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ with

$$
\begin{aligned}
x_{1} & =-x_{4} \\
x_{2} & =-x_{4} \\
x_{3} & =-x_{4} \\
x_{4} & =x_{4} .
\end{aligned}
$$

We conclude that

$$
\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

is a basis for the nullspace of A. The vectors

$$
A_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right], A_{*, 2}=\left[\begin{array}{l}
2 \\
2 \\
4 \\
2
\end{array}\right], A_{*, 3}=\left[\begin{array}{l}
3 \\
3 \\
6 \\
6
\end{array}\right]
$$

are a basis for the column space of A. The vectors

$$
\begin{aligned}
& w_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right] \\
& w_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right] \\
& w_{3}=\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

are a basis for the row space of A. We also see that

$$
A_{*, 4}=A_{*, 1}+A_{*, 2}+A_{*, 3}
$$

and

$$
\begin{aligned}
& A_{1, *}=1 w_{1}+2 w_{2}+3 w_{3} \\
& A_{2, *}=2 w_{1}+2 w_{2}+3 w_{3} \\
& A_{3, *}=3 w_{1}+4 w_{2}+6 w_{3} \\
& A_{4, *}=1 w_{1}+2 w_{2}+6 w_{3} \\
& \hline
\end{aligned}
$$

2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in the vector space V are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $c_{1} v_{1}+\cdots+c_{p} v_{p}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. Let $T: V \rightarrow W$ be a linear transformation of vector spaces. Let w_{1}, \ldots, w_{b} be a basis for the image of $T ; z_{1}, \ldots, z_{a}$ be a basis for the null space of T; and v_{1}, \ldots, v_{b} be vectors in V with $T\left(v_{i}\right)=w_{i}$ for $1 \leq i \leq b$. Prove that the vectors $v_{1}, \ldots, v_{b}, z_{1}, \ldots, z_{a}$ span V. Recall that the image of T is equal to

$$
\{w \in W \mid w=T(v) \text { for some } v \in V\}
$$

Let v be a vector in V. The vector $T(v)$ is in the image of T; so, $T(v)$ is a linear combination of the vectors w_{1}, \ldots, w_{b} (which form a basis for the image of T). In other words, there are numbers c_{1}, \ldots, c_{b} with $T(v)=\sum_{i=1}^{b} c_{i} w_{i}$. The hypothesis tells us that $w_{i}=T\left(v_{i}\right)$ for all i; hence

$$
T(v)=\sum_{i=1}^{b} c_{i} T\left(v_{i}\right)
$$

Move everything to one side and use the fact that T is a linear transformation to see that

$$
T\left(v-\sum_{i=1}^{b} c_{i} v_{i}\right)=0
$$

In other words, $v-\sum_{i=1}^{b} c_{i} v_{i}$ is in the null space of T. The vectors z_{1}, \ldots, z_{a} form a basis for the null space of the null space of T; hence, $v-\sum_{i=1}^{b} c_{i} v_{i}$ can be written as a linear combination of z_{1}, \ldots, z_{a} and v can be written as a linear combination of $z_{1}, \ldots, z_{a}, v_{1}, \ldots, v_{b}$.
4. Let $U \subseteq V \subseteq W$ be vector spaces. Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for W. Suppose further that v_{1}, v_{2}, v_{3} are in V, but v_{4} is not in V. Suppose finally, that v_{1} and v_{2} are in U, but v_{3} and v_{4} are not in U. What is the dimension of U ? Explain your answer VERY THOROUGHLY.

The dimension of U is 2 . The vector space V is a proper suspace of the four dimensional vector space W (so $\operatorname{dim} V \leq 3$); furthermore V contains 3 linearly independent vectors; hence, $\operatorname{dim} V=3$. The vector space U is a proper suspace of the three dimensional vector space V (so $\operatorname{dim} U \leq 2$); furthermore U contains 2 linearly independent vectors; hence, $\operatorname{dim} U=2$.
5. Let $V=\left\{p(x) \in \mathcal{P}_{3} \mid p^{\prime}(1)=0\right\}$. Is V a vector space? If yes, then find a basis for V. If no, then show why not? (Recall that \mathcal{P}_{3} is the vector space of polynomials of degree less than or equal to 3.)

YES. The polynomials

$$
1, \quad(x-1)^{2}, \quad(x-1)^{3}
$$

form a basis for V.
6. Let $V=\left\{M \in \operatorname{Mat}_{3 \times 3}(\mathbb{R}) \mid \operatorname{tr}(M)=0\right\}$. Is V a vector space? If yes, then find a basis for V. If no, then show why not? (Recall that $\operatorname{Mat}_{3 \times 3}(\mathbb{R}$) is the vector space of 3×3 matrices. The trace of the 3×3 matrix

$$
M=\left[\begin{array}{lll}
m_{1,1} & m_{1,2} & m_{1,3} \\
m_{2,1} & m_{2,2} & m_{2,3} \\
m_{3,1} & m_{3,2} & m_{3,3}
\end{array}\right]
$$

is $\operatorname{tr}(M)=m_{1,1}+m_{2,2}+m_{3,3} \cdot$)
YES. The matrices

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{llc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

form a basis for V.
7. Let

$$
v=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \quad \text { and } \quad u_{4}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]
$$

Express v as a linear combination of $u_{1}, u_{2}, u_{3}, u_{4}$. (You are encouraged to notice that $u_{1}, u_{2}, u_{3}, u_{4}$ form an orthogonal set of vectors.)
Write $v=\sum_{i=1}^{4} c_{i} u_{i}$. Multiply by u_{1}^{T} to see that $10=4 c_{1}$ (i.e., $c_{1}=\frac{5}{2}$). Multiply by u_{2}^{T} to see that $c_{2}=-\frac{1}{2}$. Continue in this manner to see $c_{3}=c_{4}=-1$. We conclude that $\frac{5}{2} u_{1}-\frac{1}{2} u_{2}-u_{3}-u_{4}=v$.
8. Find a matrix B with B^{2} equal to $A=\left[\begin{array}{ll}-11 & 15 \\ -20 & 24\end{array}\right]$.

Notice that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A which belongs to 4 and $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is an eigenvector of A which belongs to 9 . Thus, $A S=S D$ for $S=\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right]$ and $D=\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]$. We take

$$
B=S\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
2 & 9 \\
2 & 12
\end{array}\right]\left[\begin{array}{cc}
4 & -3 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 3 \\
-4 & 6
\end{array}\right]
$$

(Do be sure to check your answer. Mine works.)
9. Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 2 & 1 & 2\end{array}\right]$.

One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Let $u_{1}=v_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$. Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{2}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right]
$$

(At this point be sure to check that u_{2} is in the null space of A and that u_{2} is perpendicular to u_{1}.) Let

$$
\begin{aligned}
& u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]-\frac{4}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\frac{2}{30}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]-\frac{4}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{15}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right]=\frac{1}{15}\left[\begin{array}{c}
-5 \\
-10 \\
-5 \\
15
\end{array}\right]=\frac{-1}{3}\left[\begin{array}{c}
1 \\
2 \\
1 \\
-3
\end{array}\right] .
\end{aligned}
$$

Let $u_{3}=-3 u_{3}^{\prime}=\left[\begin{array}{c}1 \\ 2 \\ 1 \\ -3\end{array}\right]$. Be sure to verify that u_{3} is in the null space of A and that u_{3} is orthogonal to u_{1} and u_{2}. Our basis for the null space of A is:

$$
u_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
1 \\
2 \\
1 \\
-3
\end{array}\right]
$$

