Math 544, Exam 3, Summer 2007

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.

There are **6** problems **on TWO sides**. The exam is worth a total of 50 points. SHOW your work. <u>CIRCLE</u> your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

You should **KEEP** this copy of your exam.

I will post the solutions on my website sometime after 3:15 today.

1. (7 points) Let $V = \{p(x) \in \mathcal{P}_3 \mid \int_0^1 p(x)dx = 0\}$. Is V a vector space? If yes, then find a basis for V. If no, then show why not? (Recall that \mathcal{P}_3 is the vector space of polynomials of degree less than or equal to 3.)

Yes. The polynomials

$$x - \frac{1}{2}, \quad x^2 - \frac{1}{3}, \quad x^3 - \frac{1}{4}$$

are a basis for V.

2. (7 points) Let V be the set of singular 2×2 matrices. Is V a vector space? If yes, then find a basis for V. If no, then show why not?

NO. The set V is not closed under addition. Indeed
$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are both in V, but $M_1 + M_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not in V.

3. (7 points) Let $U \subseteq V$ be vector spaces. Suppose that v_1, v_2, v_3, v_4 is a basis for V. Suppose further that v_1 and v_2 are in U, but v_3 and v_4 are not in U. What is the dimension of U? Explain your answer VERY THOROUGHLY.

The dimension of U might be 2 or the dimension of U might be 3. Those are the only two choices and both could happen. First of all, v_1, v_2 is the beginning of

a basis for U; hence, $2 \leq \dim U$. On the other hand, if U some how had a basis which contained 4 or more vectors, then these 4 linearly independent vectors would necessarily be a basis for V; so, in this case U would equal V. But U doesn't equal V; hence, U's bases all have 3 or fewer vectors.

Here are two examples to show that $\dim U$ could equal 2 or 3:

- If v_1 and v_2 are a basis for U, then dim U = 2.
- Let

$$v_1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, v_4 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \text{ and } u_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix},$$

and let U be the span of v_1 , v_2 , and u_3 . It is clear that v_1, v_2, u_3 are linearly independent, hence dim U = 3. It is also clear that neither v_3 nor v_4 is in U(otherwise both v_3 and v_4 would have to be in U and U would be equal to all of V.)

4. (7 points) Let A be a 3×5 matrix. Suppose that z_1 , z_2 , x_1 , and x_2 are vectors in \mathbb{R}^5 and y_1 and y_2 are vectors in \mathbb{R}^3 . Suppose further that $Az_1 = 0$, $Az_2 = 0$, $Ax_1 = y_1$, and $Ax_2 = y_2$. Suppose finally, that z_1 and z_2 are linearly independent, and that y_1 and y_2 are linearly independent. Do z_1, z_2, x_1, x_2 have to be linearly independent? If yes, give a complete proof. If no, give a counter example.

Yes. Suppose c_1 , c_2 , c_3 , and c_4 are numbers with

(*)
$$c_1 z_1 + c_2 z_2 + c_3 x_1 + c_4 x_2 = 0.$$

Multiply by A to get

$$c_3y_1 + c_4y_2 = 0.$$

The vectors y_1 and y_2 are linearly independent; hence c_3 and c_4 must be zero. So the original equation (*) is

$$c_1 z_1 + c_2 z_2 = 0.$$

However, the vectors z_1 and z_2 are linearly independent; hence, c_1 and c_2 must also be zero. The only numbers which cause (*) to happen are $c_1 = c_2 = c_3 = c_4 = 0$; and therefore, z_1, z_2, x_1, x_2 are linearly independent.

- 5. (11 points) In this problem, if M is a matrix, then let $\mathcal{I}(M)$ denote the column space of M. Let A and B be $n \times n$ matrices. Answer each question. If the answer is yes, then give a proof. If the answer is no, then give a counter example.
 - (a) Is $\mathcal{I}(A)$ always a subset of $\mathcal{I}(AB)$?

No. If A = I and B = 0, then $\mathcal{I}(A) = \mathbb{R}^n$ but $\mathcal{I}(AB) = \{0\}$ and \mathbb{R}^n is not a subset of $\{0\}$.

(b) Is $\mathcal{I}(B)$ always a subset of $\mathcal{I}(AB)$?

No. If B = I and A = 0, then $\mathcal{I}(B) = \mathbb{R}^n$ but $\mathcal{I}(AB) = \{0\}$ and \mathbb{R}^n is not a subset of $\{0\}$.

(c) Is $\mathcal{I}(AB)$ always a subset of $\mathcal{I}(A)$?

Yes. If $v \in \mathcal{I}(AB)$, then v = ABx for some vector $x \in \mathbb{R}^n$. It follows that v is also equal to A times the vector Bx; and therefore $v \in \mathcal{I}(A)$

(d) Is $\mathcal{I}(AB)$ always a subset of $\mathcal{I}(B)$?

No. Take $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Observe that $AB = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. We see that $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is in the column space of AB, but $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not in the column space of B.

(e) Suppose B is non-singular. Is $\mathcal{I}(A)$ always a subset of $\mathcal{I}(AB)$?

Yes. If $v \in \mathcal{I}(A)$, then v = Ax for some $x \in \mathbb{R}^n$; hence, $v = AB(B^{-1}x)$ which is in the column space of AB.

(f) Suppose B is non-singular. Is $\mathcal{I}(B)$ always a subset of $\mathcal{I}(AB)$?

No. If B = I and A = 0, then $\mathcal{I}(B) = \mathbb{R}^n$ but $\mathcal{I}(AB) = \{0\}$ and \mathbb{R}^n is not a subset of $\{0\}$.

(g) Suppose B is non-singular. Is $\mathcal{I}(AB)$ always a subset of $\mathcal{I}(A)$? YES. This case is covered in (c).

(h) Suppose B is non-singular. Is $\mathcal{I}(AB)$ always a subset of $\mathcal{I}(B)$?

YES. If B is non-singular, then $\mathcal{I}(B) = \mathbb{R}^n$ and it certainly is true that $\mathcal{I}(AB)$ is a subset of \mathbb{R}^n .

6. (11 points) Let
$$A = \begin{bmatrix} 1 & 7 & 8 & 5 & 1 & 8 & 7 & 2 & 11 \\ 1 & 7 & 8 & 5 & 2 & 14 & 11 & 2 & 11 \\ 1 & 7 & 8 & 5 & 2 & 14 & 11 & 3 & 13 \\ 3 & 21 & 24 & 15 & 5 & 36 & 29 & 7 & 35 \end{bmatrix}$$
. Find a basis

for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A as a linear

combination of the basis you have chosen for the column space of A. Express each row of A as a linear combination of the basis you have chosen for the row space of A. Apply $R2 \mapsto R2 - R1$, $R3 \mapsto R3 - R1$, $R4 \mapsto R4 - 3R1$ to obtain

 $\begin{bmatrix} 1 & 7 & 8 & 5 & 1 & 8 & 7 & 2 & 11 \\ 0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 6 & 4 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 & 12 & 8 & 1 & 2 \end{bmatrix}.$ Apply $R1 \mapsto R1 - R2$, $R3 \mapsto R3 - R2$, $R4 \mapsto R4 - 2R2$ to obtain $\begin{bmatrix} 1 & 7 & 8 & 5 & 0 & 2 & 3 & 2 & 11 \\ 0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}.$ Apply $R1 \mapsto R1 - 2R3$, $R4 \mapsto R4 - R3$ to obtain $\begin{bmatrix} 1 & 7 & 8 & 5 & 0 & 2 & 3 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$ x_1 x_2 x_3 x_4 The null space of A is the set of all vectors x_5 | with $x_6 \mid$ x_7 x_8 $-7x_2$ $-8x_3$ $-5x_4$ $-2x_6$ $-3x_7$ $-7x_9$ $x_1 =$ $x_2 =$ x_2 $x_3 =$ x_3 $x_4 =$ x_4 $-6x_6 -4x_7$ $x_{5} =$ x_6 $x_{6} =$ $x_{7} =$ x_7 $-2x_9$ $x_8 =$ $x_{9} =$ x_9

$v_1 = 1$	$ \begin{bmatrix} -7 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$, v_2 =$	$\begin{bmatrix} -8^{-} \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$, v_3 =$	$\begin{bmatrix} -5 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$v_4 =$	$\begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ -6 \\ 1 \\ 0 \end{bmatrix}$	$, v_5 =$	$\begin{bmatrix} -3^{-}\\ 0\\ 0\\ -4\\ 0\\ 1 \end{bmatrix}$	$v_{6} =$	$\begin{bmatrix} -7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	
	0 0 0 0		0 0 0 0		0 0 0 0		$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$		$\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$		$\begin{bmatrix} 0\\ 0\\ -2\\ 1 \end{bmatrix}$	

is a basis for the null space of A. (As always, I write $A_{*,j}$ for column j of the matrix A and $A_{i,*}$ for row i of the matrix A.) The vectors

$A_{*,1} = \begin{bmatrix} 1\\1\\1\\3\end{bmatrix}$	$\Big], A_{*,5} =$	$\begin{bmatrix} 1\\2\\2\\5 \end{bmatrix}, A_{*,8} =$	$= \begin{bmatrix} 2\\2\\3\\7 \end{bmatrix}$
---	--------------------	---	--

are a basis for the column space of A. The vectors

$w_1 = [1]$	7	8	5	0	2	3	0	7],
$w_2 = [0$	0	0	0	1	6	4	0	0],
$w_3 = [0]$	0	0	0	0	0	0	1	2]

are a basis for the row space of A. We see that

$$\begin{aligned} A_{*,2} &= 7A_{*,1}, & A_{*,3} &= 8A_{*,1}, & A_{*,4} &= 5A_{*,1}, \\ A_{*,6} &= 2A_{*,1} + 6A_{*,5}, & A_{*,7} &= 3A_{*,1} + 4A_{*,4}, & A_{*,9} &= 7A_{*,1} + 2A_{*,8}. \end{aligned}$$

We also see that

$A_{1,*} = w_1 + w_2 + 2w_3$
$A_{2,*} = w_1 + 2w_2 + 2w_3$
$A_{3,*} = w_1 + 2w_2 + 3w_3$
$A_{4,*} = 3w_1 + 5w_2 + 7w_3$