Math 544, Exam 3, Summer 2007
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.
There are $\mathbf{6}$ problems on TWO sides. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

You should KEEP this copy of your exam.
I will post the solutions on my website sometime after 3:15 today.

1. (7 points) Let $V=\left\{p(x) \in \mathcal{P}_{3} \mid \int_{0}^{1} p(x) d x=0\right\}$. Is V a vector space? If yes, then find a basis for V. If no, then show why not? (Recall that \mathcal{P}_{3} is the vector space of polynomials of degree less than or equal to 3.)

Yes. The polynomials

$$
x-\frac{1}{2}, \quad x^{2}-\frac{1}{3}, \quad x^{3}-\frac{1}{4}
$$

are a basis for V.
2. (7 points) Let V be the set of singular 2×2 matrices. Is V a vector space? If yes, then find a basis for V. If no, then show why not?
NO. The set V is not closed under addition. Indeed $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are both in V, but $M_{1}+M_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is not in V.
3. (7 points) Let $U \subseteq V$ be vector spaces. Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V. Suppose further that v_{1} and v_{2} are in U, but v_{3} and v_{4} are not in U. What is the dimension of U ? Explain your answer VERY THOROUGHLY.

The dimension of U might be 2 or the dimension of U might be 3 . Those are the only two choices and both could happen. First of all, v_{1}, v_{2} is the beginning of
a basis for U; hence, $2 \leq \operatorname{dim} U$. On the other hand, if U some how had a basis which contained 4 or more vectors, then these 4 linearly independent vectors would necessarily be a basis for V; so, in this case U would equal V. But U doesn't equal V; hence, U 's bases all have 3 or fewer vectors.

Here are two examples to show that $\operatorname{dim} U$ could equal 2 or 3 :

- If v_{1} and v_{2} are a basis for U, then $\operatorname{dim} U=2$.
- Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \text { and } u_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

and let U be the span of v_{1}, v_{2}, and u_{3}. It is clear that v_{1}, v_{2}, u_{3} are linearly independent, hence $\operatorname{dim} U=3$. It is also clear that neither v_{3} nor v_{4} is in U (otherwise both v_{3} and v_{4} would have to be in U and U would be equal to all of V.)
4. (7 points) Let A be a 3×5 matrix. Suppose that z_{1}, z_{2}, x_{1}, and x_{2} are vectors in \mathbb{R}^{5} and y_{1} and y_{2} are vectors in \mathbb{R}^{3}. Suppose further that $A z_{1}=0, A z_{2}=0, A x_{1}=y_{1}$, and $A x_{2}=y_{2}$. Suppose finally, that z_{1} and z_{2} are linearly independent, and that y_{1} and y_{2} are linearly independent. Do $z_{1}, z_{2}, x_{1}, x_{2}$ have to be linearly independent? If yes, give a complete proof. If no, give a counter example.

Yes. Suppose c_{1}, c_{2}, c_{3}, and c_{4} are numbers with

$$
\begin{equation*}
c_{1} z_{1}+c_{2} z_{2}+c_{3} x_{1}+c_{4} x_{2}=0 \tag{}
\end{equation*}
$$

Multiply by A to get

$$
c_{3} y_{1}+c_{4} y_{2}=0
$$

The vectors y_{1} and y_{2} are linearly independent; hence c_{3} and c_{4} must be zero. So the original equation $\left({ }^{*}\right)$ is

$$
c_{1} z_{1}+c_{2} z_{2}=0
$$

However, the vectors z_{1} and z_{2} are linearly independent; hence, c_{1} and c_{2} must also be zero. The only numbers which cause $\left({ }^{*}\right)$ to happen are $c_{1}=c_{2}=c_{3}=c_{4}=0 ;$ and therefore, $z_{1}, z_{2}, x_{1}, x_{2}$ are linearly independent.
5. (11 points) In this problem, if M is a matrix, then let $\mathcal{I}(M)$ denote the column space of M. Let A and B be $n \times n$ matrices. Answer each question. If the answer is yes, then give a proof. If the answer is no, then give a counter example.
(a) Is $\mathcal{I}(A)$ always a subset of $\mathcal{I}(A B)$?

No. If $A=I$ and $B=0$, then $\mathcal{I}(A)=\mathbb{R}^{n}$ but $\mathcal{I}(A B)=\{0\}$ and \mathbb{R}^{n} is not a subset of $\{0\}$.
(b) Is $\mathcal{I}(B)$ always a subset of $\mathcal{I}(A B)$?

No. If $B=I$ and $A=0$, then $\mathcal{I}(B)=\mathbb{R}^{n}$ but $\mathcal{I}(A B)=\{0\}$ and \mathbb{R}^{n} is not a subset of $\{0\}$.
(c) Is $\mathcal{I}(A B)$ always a subset of $\mathcal{I}(A)$?

Yes. If $v \in \mathcal{I}(A B)$, then $v=A B x$ for some vector $x \in \mathbb{R}^{n}$. It follows that v is also equal to A times the vector $B x$; and therefore $v \in \mathcal{I}(A)$
(d) Is $\mathcal{I}(A B)$ always a subset of $\mathcal{I}(B)$?

No. Take $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Observe that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. We see that $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the column space of $A B$, but $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is not in the column space of B.
(e) Suppose B is non-singular. Is $\mathcal{I}(A)$ always a subset of $\mathcal{I}(A B)$?

Yes. If $v \in \mathcal{I}(A)$, then $v=A x$ for some $x \in \mathbb{R}^{n}$; hence, $v=A B\left(B^{-1} x\right)$ which is in the column space of $A B$.
(f) Suppose B is non-singular. Is $\mathcal{I}(B)$ always a subset of $\mathcal{I}(A B)$?

No. If $B=I$ and $A=0$, then $\mathcal{I}(B)=\mathbb{R}^{n}$ but $\mathcal{I}(A B)=\{0\}$ and \mathbb{R}^{n} is not a subset of $\{0\}$.
(g) Suppose B is non-singular. Is $\mathcal{I}(A B)$ always a subset of $\mathcal{I}(A)$? YES. This case is covered in (c).
(h) Suppose B is non-singular. Is $\mathcal{I}(A B)$ always a subset of $\mathcal{I}(B)$?

YES. If B is non-singular, then $\mathcal{I}(B)=\mathbb{R}^{n}$ and it certainly is true that $\mathcal{I}(A B)$ is a subset of \mathbb{R}^{n}.
6. (11 points) Let $A=\left[\begin{array}{ccccccccc}1 & 7 & 8 & 5 & 1 & 8 & 7 & 2 & 11 \\ 1 & 7 & 8 & 5 & 2 & 14 & 11 & 2 & 11 \\ 1 & 7 & 8 & 5 & 2 & 14 & 11 & 3 & 13 \\ 3 & 21 & 24 & 15 & 5 & 36 & 29 & 7 & 35\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A as a linear
combination of the basis you have chosen for the column space of A. Express each row of A as a linear combination of the basis you have chosen for the row space of A. Apply $R 2 \mapsto R 2-R 1, R 3 \mapsto R 3-R 1$, $R 4 \mapsto R 4-3 R 1$ to obtain

$$
\left[\begin{array}{ccccccccc}
1 & 7 & 8 & 5 & 1 & 8 & 7 & 2 & 11 \\
0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 & 4 & 1 & 2 \\
0 & 0 & 0 & 0 & 2 & 12 & 8 & 1 & 2
\end{array}\right]
$$

Apply $R 1 \mapsto R 1-R 2, R 3 \mapsto R 3-R 2, R 4 \mapsto R 4-2 R 2$ to obtain

$$
\left[\begin{array}{ccccccccc}
1 & 7 & 8 & 5 & 0 & 2 & 3 & 2 & 11 \\
0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] .
$$

Apply $R 1 \mapsto R 1-2 R 3, R 4 \mapsto R 4-R 3$ to obtain

$$
\left[\begin{array}{lllllllll}
1 & 7 & 8 & 5 & 0 & 2 & 3 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The null space of A is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{9}\end{array}\right]$ with
$x_{1}=-7 x_{2} \quad-8 x_{3} \quad-5 x_{4} \quad-2 x_{6} \quad-3 x_{7} \quad-7 x_{9}$
$x_{2}=x_{2}$
$x_{3}=\quad x_{3}$
$x_{4}=\quad x_{4}$
$x_{5}=\quad-6 x_{6} \quad-4 x_{7}$
$x_{6}=$
$x_{7}=$
$x_{8}=$
$x_{9}=$

$$
\begin{gathered}
-2 x_{9} \\
x_{9}
\end{gathered}
$$

It follows that the vectors
$v_{1}=\left[\begin{array}{c}-7 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}-8 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{c}-5 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{4}=\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 0 \\ -6 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], v_{5}=\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 0 \\ -4 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right], v_{6}=\left[\begin{array}{c}-7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 1\end{array}\right]$
is a basis for the null space of A. (As always, I write $A_{*, j}$ for column j of the matrix A and $A_{i, *}$ for row i of the matrix A.) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right], A_{*, 5}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
5
\end{array}\right], A_{*, 8}=\left[\begin{array}{l}
2 \\
2 \\
3 \\
7
\end{array}\right]
$$

are a basis for the column space of A. The vectors

$$
\begin{aligned}
& w_{1}=\left[\begin{array}{lllllllll}
1 & 7 & 8 & 5 & 0 & 2 & 3 & 0 & 7
\end{array}\right], \\
& w_{2}=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 6 & 4 & 0 & 0
\end{array}\right], \\
& w_{3}=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

are a basis for the row space of A. We see that

$$
\begin{array}{|ccc|}
\hline A_{*, 2}=7 A_{*, 1}, & A_{*, 3}=8 A_{*, 1}, & A_{*, 4}=5 A_{*, 1}, \\
A_{*, 6}=2 A_{*, 1}+6 A_{*, 5}, & A_{*, 7}=3 A_{*, 1}+4 A_{*, 4}, & A_{*, 9}=7 A_{*, 1}+2 A_{*, 8} \\
\hline
\end{array}
$$

We also see that

$$
\begin{gathered}
A_{1, *}=w_{1}+w_{2}+2 w_{3} \\
A_{2, *}=w_{1}+2 w_{2}+2 w_{3} \\
A_{3, *}=w_{1}+2 w_{2}+3 w_{3} \\
A_{4, *}=3 w_{1}+5 w_{2}+7 w_{3}
\end{gathered}
$$

