Math 544, Exam 2, Summer 2007

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.

There are $\mathbf{9}$ problems on TWO sides. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

You should KEEP this copy of your exam.
I will post the solutions on my website sometime after 3:15 today.

1. (6 points) Let A be a fixed $n \times n$ matrix and let $W=\left\{x \in \mathbb{R}^{n} \mid A x=2 x\right\}$. Is W a vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.
2. (6 points) Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}| | x_{1}\left|=\left|x_{2}\right|\right\}\right.$. Is W a vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.
3. (6 points) Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.
4. (6 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.
5. (6 points) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement " A is non-singular". Do not repeat your answer to problem 4.
6. (5 points) Let A and B be symmetric $n \times n$ matrices. Does the matrix $A B$ HAVE to be symmetric? If yes, PROVE the statement. If no, give an EXAMPLE.
7. (5 points) Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}. Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent. Do the vectors v_{1}, v_{2}, v_{3} HAVE to be linearly independent? If yes, PROVE the result. If no, show an EXAMPLE.
8. (5 points) Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{\mathrm{T}} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.
9. (5 points) Consider the vectors

$$
w=\left[\begin{array}{c}
7 \\
8 \\
10
\end{array}\right], \quad v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right] ?
$$

Is the vector w in the span of the vectors v_{1}, v_{2}, and v_{3} ? Explain thoroughly.

