Math 544, Exam 1, Summer 2007 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.

There are 7 problems. The exam is worth a total of 50 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will post the solutions on my website sometime after 3:15 today.

1. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, \ldots, v_p in \mathbb{R}^n are *linearly independent* if the only numbers c_1, \ldots, c_p with $\sum_{i=1}^p c_i v_i = 0$ are $c_1 = c_2 = \cdots = c_p = 0$.

2. (7 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is non-singular if the only column vector x with Ax = 0 is x = 0.

3. (7 points) Let A be an $n \times n$ matrix. List two conditions which are equivalent to the statement "A is non-singular". Do not repeat your answer to problem 2.

The following conditions are equivalent to the statement "A is non-singular".

(1) The columns of A are linearly independent.

- (2) The system of equations Ax = b has a unique solution for each vector $b \in \mathbb{R}^n$.
- 4. (8 points) Find the GENERAL solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

x_1	$+3x_{2}$	$+4x_{3}$	$+2x_{4}$	$+4x_{5}$	=	16
x_1	$+3x_{2}$	$+4x_{3}$	$+3x_{4}$	$+6x_{5}$	=	21
$2x_1$	$+6x_{2}$	$+8x_{3}$	$+5x_{4}$	$+10x_{5}$	=	37

Consider

$$\begin{bmatrix} 1 & 3 & 4 & 2 & 4 \\ 1 & 3 & 4 & 3 & 6 \\ 2 & 6 & 8 & 5 & 10 \end{bmatrix} \begin{bmatrix} 16 \\ 21 \\ 37 \end{bmatrix}$$

Apply $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - 2R_1$ to get:

[1	3	4	2	4	I	16
0	0	0	1	2		5
0	0	0	1	2		$\begin{array}{c} 16 \\ 5 \\ 5 \end{array}$

Apply $R_3 \mapsto R_3 - R_2$ and $R_1 \mapsto R_1 - 2R_2$ to get:

[1	3	4	0	0		6]
0	0	0	1	2		5
$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0	0	0	0	I	0

The general solution of this system of equations is

$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$\begin{bmatrix} 6\\0 \end{bmatrix}$		$\begin{bmatrix} -3\\1 \end{bmatrix}$		$\begin{bmatrix} -4 \\ 0 \end{bmatrix}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
$ x_3 =$	= 0	$+x_{2}$	0	$+x_{3}$	1	$+x_{5}$	0	
x_4	5		0		0		-2	
$\lfloor x_5 \rfloor$	L0J		LOL		L 0 _		L 1 _	

Some specific solutions are:

F 67		[3]		$\lceil 2 \rceil$		[6]	
0		1		0		0	
0	,	0	,	1	,	0	
5		5		5		3	
						L1_	

(We took $x_2 = x_3 = x_5 = 0$, $x_2 = 1$ with $x_3 = x_5 = 0$, $x_3 = 1$ with $x_2 = x_5 = 0$, $x_5 = 1$ with $x_2 = x_3 = 0$.) We check that each specific solution does indeed satisfy the equations:

$$\begin{array}{rll} 6+10 = 16 & 3+3+10 = 16 & 2+4+10 = 16 \\ 6+15 = 21 & 3+3+15 = 21 & 2+4+15 = 21 \\ 12+25 = 37 & 6+6+25 = 37 & 4+8+25 = 37 \\ & 6+6+4 = 16 \\ & 6+9+6 = 21 \\ & 12+15+10 = 37. \checkmark \end{array}$$

5. (7 points) Consider the system of linear equations.

$$\begin{array}{c} x_1 + 4ax_2 = 4\\ ax_1 + x_2 = 2 \end{array}$$

- (a) Which values for a cause the system to have no solution?
- (b) Which values for a cause the system to have exactly one solution?
- (c) Which values for *a* cause the system to have an infinite number of solutions?

Explain thoroughly.

Apply row operations to

$$\begin{bmatrix} 1 & 4a & | & 4 \\ a & 1 & | & 2 \end{bmatrix}$$

Apply $R_2 \mapsto R_2 - aR_1$ to get

$$\begin{bmatrix} 1 & 4a \\ 0 & 1-4a^2 \end{bmatrix} \begin{bmatrix} 4 \\ 2-4a \end{bmatrix}$$

If $1 - 4a^2 \neq 0$, then the system of equations has a unique solution.

If $1 - 4a^2 = 0$ and 2 - 4a = 0, then the system of equations has infinitely many solutions.

If $1 - 4a^2 = 0$ and $2 - 4a \neq 0$, then the system of equations has no solution. We notice that $1 - 4a^2 = 0$ when (1 - 2a)(1 + 2a) = 0. Thus, $a = \frac{1}{2}$, or $a = -\frac{1}{2}$. We notice that when $a = \frac{1}{2}$, then 2 - 4a = 0We notice that when $a = -\frac{1}{2}$, then $2 - 4a \neq 0$. We conclude

If a is different than $\frac{1}{2}$ and $-\frac{1}{2}$, then the system has a unique solution. If $a = \frac{1}{2}$, then the system has infinitely many solutions. If $a = -\frac{1}{2}$, then the system has no solution.

6. (7 points) Are the vectors

$$v_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$$

linearly independent? Explain thoroughly.

These vectors are linearly dependent because $v_1 - 2v_2 + v_3 = 0$.

7. (7 points) Let v_1, v_2, v_3, v_4 be vectors in \mathbb{R}^5 . Suppose that v_1, v_2, v_3, v_4 are linearly dependent. Do the vectors v_1, v_2, v_3 HAVE to be linearly dependent? If yes, PROVE the result. If no, show an EXAMPLE.

No.
$$v_1 = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}, v_4 = \begin{bmatrix} 1\\1\\1\\0\\0 \end{bmatrix}$$
 are linearly dependent, but

 $v_1.v_2, v_3$ are linearly independent.

4