Math 544, Final Exam, Summer 2006, Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. **Leave room on the upper left hand corner of each page for the staple.** Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 12 problems. The exam is worth a total of 100 points.

SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**. Otherwise, get your grade from VIP.

I will post the solutions on my website shortly after class is finished.

1. (7 points) Define "span". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, v_2, \ldots, v_n in the vector space V span V if every vector in V is equal to a linear combination of v_1, v_2, \ldots, v_n .

2. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, \ldots, v_p in the vector space V are *linearly independent* if the ONLY numbers c_1, \ldots, c_p , with $c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0$ are $c_1 = c_2 = \cdots = c_p = 0$.

3. (10 points) Consider the matrices

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 5 \\ 5 \\ 10 \end{bmatrix}.$$

(a) Find the GENERAL solution of the system of linear equations Ax = b.

Apply the row operations $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - 2R_1$ to the matrix

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 10 & | & 5 \\ 1 & 2 & -1 & 2 & 16 & | & 5 \\ 2 & 4 & -2 & 3 & 26 & | & 10 \end{bmatrix}$$

to obtain

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 10 & | & 5 \\ 0 & 0 & 0 & 1 & 6 & | & 0 \\ 0 & 0 & 0 & 1 & 6 & | & 0 \end{bmatrix}.$$

Apply $R_3 \mapsto R_3 - R_2$ and $R_1 \mapsto R_1 - R_2$ to get

2	-1	0	4	5	
0	0	1	6	0	
0	0	0	0	0	
	$2 \\ 0 \\ 0$	$\begin{array}{ccc} 2 & -1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 2 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The general solution of the system of equations is

{	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$	=	$\begin{bmatrix} 5\\0\\0\\0\\0\\0\end{bmatrix}$	$+x_{2}$	$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$+x_{3}$	$\begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix}$	$+x_{5}$	$\begin{bmatrix} -4\\0\\0\\-6\\1 \end{bmatrix}$	$x_2, x_3, x_5 \in \mathbb{R}$	
C	$\lfloor x_5 \rfloor$		$L0_{-}$)	,

(b) List three SPECIFIC solutions of Ax = b.

Some specific solutions of this system of equations are

$$v_1 = \begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3\\1\\0\\0\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 6\\0\\1\\0\\0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 1\\0\\0\\-6\\1 \end{bmatrix}.$$

(In v_1 , I took $x_2 = x_3 = x_5 = 0$. In v_2 , I took $x_2 = 1$, $x_3 = 0$, and $x_5 = 0$. In v_3 , I took $x_2 = 0$, $x_3 = 1$, and $x_5 = 0$. In v_4 , I took $x_2 = 0$, $x_3 = 0$, and $x_5 = 1$.) (c) CHECK that the specific solutions satisfy the equations.

We check

$$Av_{1} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 \\ 5 \cdot 2 \\ 5 \cdot 2 \end{bmatrix} = b \cdot \checkmark$$
$$Av_{2} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \cdot 1 + 2 \cdot 1 \\ 3 \cdot 1 + 2 \cdot 1 \\ 3 \cdot 2 + 1 \cdot 4 \end{bmatrix} = b \cdot \checkmark$$
$$Av_{3} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \cdot 1 + 1 \cdot (-1) \\ 6 \cdot 2 + 1 \cdot (-1) \\ 6 \cdot 2 + 1 \cdot (-2) \end{bmatrix} = b \cdot \checkmark$$
$$Av_{4} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ -6 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 - 6 \cdot 1 + 1 \cdot 10 \\ 1 \cdot 1 - 6 \cdot 2 + 1 \cdot 16 \\ 1 \cdot 2 - 6 \cdot 3 + 1 \cdot 26 \end{bmatrix} = b \cdot \checkmark$$

$(d)\;$ Find a basis for the null space of A .

The vectors

$\lceil -2 \rceil$	J	٢1٦	$\lceil -4 \rceil$
1		0	0
0	,	1 ,	0
0		0	-6
Lo]	LoJ	$\lfloor 1 \rfloor$

are a basis for the null space of $\,A\,.\,$

(e) Find a basis for the column space of A.

4

$$u_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix} \quad \text{and} \quad u_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

are a basis for the column space of A.

(f) Find a basis for the row space of A.

The vectors

$$w_1 = \begin{bmatrix} 1 & 2 & -1 & 0 & 4 \end{bmatrix}$$
 and $w_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 6 \end{bmatrix}$

are a basis for the row space of A.

(g) Express each column of A in terms of your answer to (e).

We see that

$$A_{*,1} = u_1, \quad A_{*,2} = 2u_1, \quad A_{*,3} = -u_1, \quad A_{*,4} = u_2, \quad A_{*,5} = 4u_1 + 6u_2,$$

where $A_{*,j}$ means column j of the matrix A.

(h) **Express each row of** A **in terms of your answer to (f).** We see that

$$A_{1,*} = w_1 + w_2, \quad A_{2,*} = w_1 + 2w_2, \quad A_{3,*} = 2w_1 + 3w_2,$$

where $A_{i,*}$ means row *i* of the matrix A.

4. (8 points) Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 3 & 4 & 5 \end{bmatrix}$.

One basis for the null space of A is

$$v_1 = \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -4\\0\\1\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix}.$$

Let

$$u_1 = v_1 = \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}.$$

Let

$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} -4\\0\\1\\0\\0 \end{bmatrix} - \frac{12}{10}\begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} = \frac{1}{5}\left(\begin{bmatrix} -20\\0\\5\\0\\0 \end{bmatrix} - 6\begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix}\right) = \frac{1}{5}\begin{bmatrix} -2\\-6\\5\\0\\0 \end{bmatrix}.$$

Let

$$u_2 = 5u_2' = \begin{bmatrix} -2\\ -6\\ 5\\ 0 \end{bmatrix}.$$

We check that $u_1^{\mathrm{T}}u_2 = 0$ and $Au_2 = 0$. Let

Let

$$u_3 = 26u'_3 = \begin{bmatrix} -5\\ -15\\ -20\\ 26 \end{bmatrix}.$$

Check that $Au_3 = 0$, $u_1^{\mathrm{T}}u_3 = 0$, and $u_2^{\mathrm{T}}u_3 = 0$. Our answer is

$u_1 = \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix},$	$u_2 = \begin{bmatrix} -2\\ -6\\ 5\\ 0 \end{bmatrix},$	$u_3 = \begin{bmatrix} -5\\ -15\\ -20\\ 26 \end{bmatrix}.$
--	--	--

5. (8 points) Let $A = \begin{bmatrix} -1 & -10 \\ 5 & 14 \end{bmatrix}$. Find a matrix B with $B^2 = A$. CHECK your answer.

Find the eigenvalues and eigenvectors of A.

$$0 = \det(A - \lambda I) = (-1 - \lambda)(14 - \lambda) + 50 = \lambda^2 - 13\lambda + 36 = (\lambda - 4)(\lambda - 9).$$

So the eigenvalues of A are 4 and 9. The eigenspace belonging to 4 is spanned by $\begin{bmatrix} -2\\1 \end{bmatrix}$. The eigenspace belonging to 9 is spanned by $\begin{bmatrix} -1\\1 \end{bmatrix}$. Let

$$S = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}.$$

Observe that AS = SD. We see that $S^{-1} = \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix}$. Let

$$B = S \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} S^{-1} = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix}$$
$$= \boxed{\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}}.$$

We check that

$$B^{2} = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -1 & -10 \\ 5 & 14 \end{bmatrix} = A.$$

6. (10 points) State the four Theorems about vector space dimension.

<u>Theorem 1.</u> If V is a vector space with one finite basis, then every basis for V has the same number of vectors.

<u>Theorem 2.</u> If V is a (finite dimensional) vector space, then every linearly independent subset in V is part of a basis for V.

<u>Theorem 3.</u> If V is a vector space, then every finite spanning set for V contains a basis for V.

<u>Theorem 4.</u> If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.

7. (10 points) Let A be an $n \times n$ matrix. Record eight statements that are equivalent to "the matrix A is invertible".

- 1. There is a matrix B with AB equal to the identity matrix and BA equal to the identity matrix.
- 2. There is a matrix B with AB equal to the identity matrix.
- 3. There is a matrix B with BA equal to the identity matrix.
- 4. The null space of A is $\{0\}$.
- 5. The columns of A are linearly independent.
- 6. The only solution to Ax = 0 is x = 0.
- 7. The columns of A span \mathbb{R}^n .
- 8. The system of equations Ax = b has a solution for all $b \in \mathbb{R}^n$.
- 9. The columns of A are a basis for \mathbb{R}^n .
- 10. The dimension of the null space of A is zero.
- 11. The dimension of the column space of A is n.
- 12. The rank of A is n.
- 13. The rows of A are linearly independent.
- 14. The rows of A span the vector space of all row vectors with n entries.
- 15. The dimension of the row space of A is n.
- 16. Zero is not an eigenvalue of A.
- 17. The determinant of A is not zero.
- 18. The matrix A is non-singular.

8. (7 points) Let V be a subspace of \mathbb{R}^4 . Suppose v_1, v_2, v_3 are linearly independent elements of V. Suppose also that $V \neq \mathbb{R}^4$. Does v_1, v_2, v_3 have to be a basis for V? If yes, prove your assertion. If no, give a counter example.

YES. The vector space V is a proper subspace of \mathbb{R}^4 ; so dim $V < \dim \mathbb{R}^4 = 4$. Thus, dim $V \leq 3$. The linearly independent set v_1, v_2, v_3 is contained in a basis for V; but every basis for V has dim V vectors and dim $V \leq 3$. Thus, v_1, v_2, v_3 MUST already be a basis for V.

9. (8 points) Let V be the vector space of symmetric 3×3 matrices. Give a basis for V. Explain your answer.

One basis for V is

$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\0\end{bmatrix},$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\0\end{bmatrix},$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix},$
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\0\end{bmatrix},$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\end{bmatrix},$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\0\end{bmatrix}.$

It is clear that each of the listed matrices is symmetric. It is clear that every 3×3 symmetric matrix is a linear combination of the six listed matrices. It is also clear that the six listed matrices are linearly independent.

- 10. (8 points) Let V be the set of non-singular 2×2 matrices. Is V a vector space? Explain your answer.
- NO. The set V is not closed under addition. The matrices $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ are both in V; but the sum $A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not in V.
- 11. (7 points) Let \mathcal{C} be the vector space of integrable functions $f: \mathbb{R} \to \mathbb{R}$, and let $F: \mathcal{C} \to \mathbb{R}$ be the function which is defined by $F(f) = \int_{1}^{2} f(x) dx$ for each $f \in \mathcal{C}$. Is F a linear transformation? Explain your answer.

YES. Use the rules of calculus:

$$F(f+g) = \int_{1}^{2} [f(x) + g(x)]dx = \int_{1}^{2} f(x)dx + \int_{1}^{2} g(x)dx = F(f) + F(g)$$

and

$$F(cf) = \int_{1}^{2} cf(x)dx = c \int_{1}^{2} f(x)dx = cF(f)$$

for all $f, g \in \mathcal{C}$ and all $c \in \mathbb{R}$.

- 12. (10 points) In this problem, if M is a matrix, then let $\mathcal{N}(M)$ be the null space of M. Let A and B be $n \times n$ matrices. For each question: if the answer is yes, then prove the statement; if the answer is no, then give a counter example.
 - (a) Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(AB)$?
 - (c) Suppose B is non-singular. Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(AB)$?
 - (e) Suppose A is non-singular. Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(AB)$?

Parts (a), (c), and (e) all have answer YES. If $v \in \mathcal{N}(B)$, then Bv = 0; so, ABv = 0 and $v \in \mathcal{N}(AB)$. The singularity or non-singularity of A and/or B is completely irrelevant.

- (b) Does $\mathcal{N}(AB)$ have to be a subset of $\mathcal{N}(B)$?
- (d) Suppose B is non-singular. Does $\mathcal{N}(AB)$ have to be a subset of $\mathcal{N}(B)$?

Parts (b) and (d) both have answer NO. If A is the zero matrix and B is the identity matrix, then $\mathcal{N}(AB) = \mathbb{R}^n$, $\mathcal{N}(B) = \{0\}$ and \mathbb{R}^n is not a subset of $\{0\}$. Of course, in this example, B is non-singular.

(f) Suppose A is non-singular. Does $\mathcal{N}(AB)$ have to be a subset of $\mathcal{N}(B)$?

YES. If $v \in \mathcal{N}(AB)$, then ABv = 0. However, this matrix A is non-singular and A(Bv) = 0; so Bv must already be zero. Thus, v must already be in $\mathcal{N}(B)$.