Math 544, Final Exam, Summer 2006, Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Leave room on the upper left hand corner of each page for the staple. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 12 problems. The exam is worth a total of 100 points.
SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.

I will post the solutions on my website shortly after class is finished.

1. (7 points) Define "span". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors $v_{1}, v_{2}, \ldots, v_{n}$ in the vector space $V \operatorname{span} V$ if every vector in V is equal to a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$.
2. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in the vector space V are linearly independent if the ONLY numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. (10 points) Consider the matrices

$$
A=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
5 \\
5 \\
10
\end{array}\right]
$$

(a) Find the GENERAL solution of the system of linear equations $A x=b$.

Apply the row operations $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to the matrix

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 1 & 10 & 5 \\
1 & 2 & -1 & 2 & 16 & 5 \\
2 & 4 & -2 & 3 & 26 & 10
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 1 & 10 & 5 \\
0 & 0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 1 & 6 & 0
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{2}$ and $R_{1} \mapsto R_{1}-R_{2}$ to get

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 0 & 4 & 5 \\
0 & 0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution of the system of equations is
$\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ -6 \\ 1\end{array}\right] \right\rvert\, x_{2}, x_{3}, x_{5} \in \mathbb{R}\right\}$.
(b) List three SPECIFIC solutions of $A x=b$.

Some specific solutions of this system of equations are

$$
v_{1}=\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
6 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-6 \\
1
\end{array}\right] .
$$

(In v_{1}, I took $x_{2}=x_{3}=x_{5}=0$. In v_{2}, I took $x_{2}=1, x_{3}=0$, and $x_{5}=0$. In v_{3}, I took $x_{2}=0, x_{3}=1$, and $x_{5}=0$. In v_{4}, I took $x_{2}=0, x_{3}=0$, and $x_{5}=1$.)
(c) CHECK that the specific solutions satisfy the equations.

We check

$$
\begin{gathered}
A v_{1}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \cdot 1 \\
5 \cdot 1 \\
5 \cdot 2
\end{array}\right]=b . \checkmark \\
A v_{2}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
3 \cdot 1+2 \cdot 1 \\
3 \cdot 1+2 \cdot 1 \\
3 \cdot 2+1 \cdot 4
\end{array}\right]=b . \checkmark \\
A v_{3}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \cdot 1+1 \cdot(-1) \\
6 \cdot 1+1 \cdot(-1) \\
6 \cdot 2+1 \cdot(-2)
\end{array}\right]=b . \checkmark \\
A v_{4}=\left[\begin{array}{lllll}
1 & -1 & 1 & 10 \\
1 & -1 & 2 & 16 \\
2 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
-6 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 1-6 \cdot 1+1 \cdot 10 \\
1 \cdot 1-6 \cdot 2+1 \cdot 16 \\
1 \cdot 2-6 \cdot 3+1 \cdot 26
\end{array}\right]=b . \checkmark
\end{gathered}
$$

(d) Find a basis for the null space of A.

The vectors

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-4 \\
0 \\
0 \\
-6 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(e) Find a basis for the column space of A.

The vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { and } \quad u_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

are a basis for the column space of A.
(f) Find a basis for the row space of A.

The vectors

$$
w_{1}=\left[\begin{array}{lllll}
1 & 2 & -1 & 0 & 4
\end{array}\right] \quad \text { and } \quad w_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

are a basis for the row space of A.
(g) Express each column of A in terms of your answer to (e).

We see that

$$
A_{*, 1}=u_{1}, \quad A_{*, 2}=2 u_{1}, \quad A_{*, 3}=-u_{1}, \quad A_{*, 4}=u_{2}, \quad A_{*, 5}=4 u_{1}+6 u_{2},
$$

where $A_{*, j}$ means column j of the matrix A.
(h) Express each row of A in terms of your answer to (f).

We see that

$$
A_{1, *}=w_{1}+w_{2}, \quad A_{2, *}=w_{1}+2 w_{2}, \quad A_{3, *}=2 w_{1}+3 w_{2}
$$

where $A_{i, *}$ means row i of the matrix A.
4. (8 points) Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 3 & 4 & 5\end{array}\right]$.

One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let

$$
u_{1}=v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right]-\frac{12}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left(\left[\begin{array}{c}
-20 \\
0 \\
5 \\
0
\end{array}\right]-6\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]
$$

We check that $u_{1}^{\mathrm{T}} u_{2}=0$ and $A u_{2}=0$. Let

$$
\begin{gathered}
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{15}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{10}{65}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{2}{13}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]=\frac{1}{26}\left(\left[\begin{array}{c}
-130 \\
0 \\
0 \\
26
\end{array}\right]-39\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-4\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]\right) \\
=\frac{1}{26}\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right]
\end{gathered}
$$

Let

$$
u_{3}=26 u_{3}^{\prime}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right] .
$$

Check that $A u_{3}=0, u_{1}^{\mathrm{T}} u_{3}=0$, and $u_{2}^{\mathrm{T}} u_{3}=0$. Our answer is

$$
u_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right]
$$

5. (8 points) Let $A=\left[\begin{array}{cc}-1 & -10 \\ 5 & 14\end{array}\right]$. Find a matrix B with $B^{2}=A$. CHECK your answer.

Find the eigenvalues and eigenvectors of A.

$$
0=\operatorname{det}(A-\lambda I)=(-1-\lambda)(14-\lambda)+50=\lambda^{2}-13 \lambda+36=(\lambda-4)(\lambda-9) .
$$

So the eigenvalues of A are 4 and 9 . The eigenspace belonging to 4 is spanned by $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. The eigenspace belonging to 9 is spanned by $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Let

$$
S=\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
4 & 0 \\
0 & 9
\end{array}\right]
$$

Observe that $A S=S D$. We see that $S^{-1}=\left[\begin{array}{cc}-1 & -1 \\ 1 & 2\end{array}\right]$. Let

$$
\begin{gathered}
B=S\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-4 & -3 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right] \\
=\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right] .
\end{gathered}
$$

We check that

$$
B^{2}=\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 & -10 \\
5 & 14
\end{array}\right]=A
$$

6. (10 points) State the four Theorems about vector space dimension.

Theorem 1. If V is a vector space with one finite basis, then every basis for V has the same number of vectors.

Theorem 2. If V is a (finite dimensional) vector space, then every linearly independent subset in V is part of a basis for V.

Theorem 3. If V is a vector space, then every finite spanning set for V contains a basis for V.

Theorem 4. If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.
7. (10 points) Let A be an $n \times n$ matrix. Record eight statements that are equivalent to "the matrix A is invertible".

1. There is a matrix B with $A B$ equal to the identity matrix and $B A$ equal to the identity matrix.
2. There is a matrix B with $A B$ equal to the identity matrix.
3. There is a matrix B with $B A$ equal to the identity matrix.
4. The null space of A is $\{0\}$.
5. The columns of A are linearly independent.
6. The only solution to $A x=0$ is $x=0$.
7. The columns of A span \mathbb{R}^{n}.
8. The system of equations $A x=b$ has a solution for all $b \in \mathbb{R}^{n}$.
9. The columns of A are a basis for \mathbb{R}^{n}.
10. The dimension of the null space of A is zero.
11. The dimension of the column space of A is n.
12. The rank of A is n.
13. The rows of A are linearly independent.
14. The rows of A span the vector space of all row vectors with n entries.

15 . The dimension of the row space of A is n.
16. Zero is not an eigenvalue of A.
17. The determinant of A is not zero.
18. The matrix A is non-singular.
8. (7 points) Let V be a subspace of \mathbb{R}^{4}. Suppose v_{1}, v_{2}, v_{3} are linearly independent elements of V. Suppose also that $V \neq \mathbb{R}^{4}$. Does v_{1}, v_{2}, v_{3} have to be a basis for V ? If yes, prove your assertion. If no, give a counter example.
YES. The vector space V is a proper subspace of \mathbb{R}^{4}; so $\operatorname{dim} V<\operatorname{dim} \mathbb{R}^{4}=4$. Thus, $\operatorname{dim} V \leq 3$. The linearly independent set v_{1}, v_{2}, v_{3} is contained in a basis for V; but every basis for V has $\operatorname{dim} V$ vectors and $\operatorname{dim} V \leq 3$. Thus, v_{1}, v_{2}, v_{3} MUST already be a basis for V.
9. (8 points) Let V be the vector space of symmetric 3×3 matrices. Give a basis for V. Explain your answer.
One basis for V is
$\left.\left.\begin{array}{|ll}{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],} & {\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],}\end{array} \begin{array}{ll}{\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right],} \\ {\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],} & {\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],}\end{array} \begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right].\right]$.

It is clear that each of the listed matrices is symmetric. It is clear that every 3×3 symmetric matrix is a linear combination of the six listed matrices. It is also clear that the six listed matrices are linearly independent.
10. (8 points) Let V be the set of non-singular 2×2 matrices. Is V a vector space? Explain your answer.
NO. The set V is not closed under addition. The matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ are both in V; but the sum $A+B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not in V.
11. (7 points) Let \mathcal{C} be the vector space of integrable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, and let $F: \mathcal{C} \rightarrow \mathbb{R}$ be the function which is defined by $F(f)=\int_{1}^{2} f(x) d x$ for each $f \in \mathcal{C}$. Is F a linear transformation? Explain your answer.

YES. Use the rules of calculus:

$$
F(f+g)=\int_{1}^{2}[f(x)+g(x)] d x=\int_{1}^{2} f(x) d x+\int_{1}^{2} g(x) d x=F(f)+F(g)
$$

and

$$
F(c f)=\int_{1}^{2} c f(x) d x=c \int_{1}^{2} f(x) d x=c F(f)
$$

for all $f, g \in \mathcal{C}$ and all $c \in \mathbb{R}$.
12. (10 points) In this problem, if M is a matrix, then let $\mathcal{N}(M)$ be the null space of M. Let A and B be $n \times n$ matrices. For each question: if the answer is yes, then prove the statement; if the answer is no, then give a counter example.
(a) Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(A B)$?
(c) Suppose B is non-singular. Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(A B) ?$
(e) Suppose A is non-singular. Does $\mathcal{N}(B)$ have to be a subset of $\mathcal{N}(A B) ?$

Parts (a), (c), and (e) all have answer YES. If $v \in \mathcal{N}(B)$, then $B v=0$; so, $A B v=0$ and $v \in \mathcal{N}(A B)$. The singularity or non-singularity of A and/or B is completely irrelevant.
(b) Does $\mathcal{N}(A B)$ have to be a subset of $\mathcal{N}(B)$?
(d) Suppose B is non-singular. Does $\mathcal{N}(A B)$ have to be a subset of $\mathcal{N}(B)$?

Parts (b) and (d) both have answer NO. If A is the zero matrix and B is the identity matrix, then $\mathcal{N}(A B)=\mathbb{R}^{n}, \mathcal{N}(B)=\{0\}$ and \mathbb{R}^{n} is not a subset of $\{0\}$. Of course, in this example, B is non-singular.
(f) Suppose A is non-singular. Does $\mathcal{N}(A B)$ have to be a subset of $\mathcal{N}(B)$?

YES. If $v \in \mathcal{N}(A B)$, then $A B v=0$. However, this matrix A is non-singular and $A(B v)=0$; so $B v$ must already be zero. Thus, v must already be in $\mathcal{N}(B)$.

