Math 544, Exam 1, Summer 2006 Solutions
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Leave room on the upper left hand corner of each page for the staple. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

The exam is worth a total of 50 points. There are 7 problems. Problem one is worth 8 points. Each of the other problems is worth 7 points.

SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after class is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right] .
$$

We apply row operations to

$$
\left[\begin{array}{ccccc|c}
1 & 4 & 5 & 1 & 8 & 3 \\
1 & 4 & 5 & 2 & 10 & 5 \\
3 & 12 & 15 & 4 & 26 & 11
\end{array}\right] .
$$

Replace $R 2 \mapsto R 2-R 1$ and $R 3 \mapsto R 3-3 R 1$ to get

$$
\left[\begin{array}{lllll|l}
1 & 4 & 5 & 1 & 8 & 3 \\
0 & 0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 2 & 2
\end{array}\right] .
$$

Replace $R 1 \mapsto R 1-R 2$ and $R 3 \mapsto R 3-R 2$ to get

$$
\left[\begin{array}{lllll|l}
1 & 4 & 5 & 0 & 6 & 1 \\
0 & 0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The general solution of the system of equations is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-6 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

where x_{2}, x_{3}, and x_{5} are free to take any value.
To obtain particular solutions of the system of equations, take $x_{2}=x_{3}=x_{5}=1$ to obtain $v_{1} ; x_{2}=1, x_{3}=x_{5}=0$ to obtain $v_{2} ; x_{2}=x_{5}=0, x_{3}=1$ to obtain v_{3} and $x_{2}=x_{3}=0, x_{5}=1$ to obtain v_{4} :

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
2 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

We check

$$
A v_{1}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark
$$

$$
\begin{aligned}
& A v_{2}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark \\
& A v_{3}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-4 \\
0 \\
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark
\end{aligned}
$$

and

$$
A v_{4}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b . \checkmark
$$

2. Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+a x_{2} & =1 \\
a x_{1}+4 x_{2} & =2 .
\end{aligned}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?
Explain thoroughly.
Apply row operations to

$$
\left[\begin{array}{ll|l}
1 & a & 1 \\
a & 4 & 2
\end{array}\right] .
$$

Replace $R 2 \mapsto R 2-a R 1$ to obtain

$$
\left[\begin{array}{cc|c}
1 & a & 1 \\
0 & 4-a^{2} & 2-a
\end{array}\right] .
$$

We conclude:
(a) If $4-a^{2}=0$ and $2-a$ is not zero, then the system of equations has no solution.

$$
\text { That is, the system of equations has no solution for } a=-2 \text {. }
$$

(b) If $4-a^{2} \neq 0$, then the system of equations has exactly one solution.

The system of equations has exactly one solution whenever a is different from both 2 and -2 .
(c) If $4-a^{2}=0$ and $2-a=0$, then the system of equations has an infinite number of solutions.

That is, the system of equations has an infinite number of solutions when $a=2$.
3. Let A and B be 2×2 matrices with $A B$ invertible. Does A have to be invertible? If yes, prove your answer. If no, give a counterexample.

YES. We are told that there is a 2×2 matrix C with $C(A B)=I$ and $(A B) C=I$. Thus, $B C$ is a a 2×2 matrix with $A(B C)=I$. We proved in class (twice) that if M and N are $n \times n$ matrices with $M N=I$, then $N M$ is also equal to I. Thus, $(B C) A$ is also equal to I and $B C$ is the inverse of A.
4. Recall that the matrix A is symmetric if $A^{\mathrm{T}}=A$. Let A and B be 2×2 symmetric matrices with $A B=B A$. Does $A B$ have to be symmetric? If yes, prove your answer. If no, give a counterexample.

YES. We proved that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$ for all matrices A and B. The hypothesis that A and B are symmetric ensures that $A^{\mathrm{T}}=A$ and $B^{\mathrm{T}}=B$. Now use the hypothsis that $A B=B A$ to see that:

$$
(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}=B A=A B
$$

We conclude that $A B$ is a symmetric matrix.
5. Let v_{1}, v_{2}, v_{3} be linearly independent vectors in \mathbb{R}^{3}. Can every vector in \mathbb{R}^{3} be written in terms of v_{1}, v_{2}, v_{3} in a unique way? If yes, prove your answer. If no, give a counterexample.

YES. Let M be the matrix whose columns are v_{1}, v_{2}, v_{3}. The matrix M is a 3×3 matrix and the columns of M are linearly independent; thus, the Non-Singular Matrix Theorem applies to M. Thus M satisfies ALL of the conditions of the Non-Singular Matrix Theorem. In particular, the system of equations $M x=v$ has a unique solution x for all column vectors $v \in \mathbb{R}^{3}$. In other words, once the vector $v \in \mathbb{R}^{3}$ is given there, then there is a unique choice of scalars x_{1}, x_{2}, and x_{3} with $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=v$.
6. Let A and B be 2×2 matrices with A not equal to the zero matrix and $B A=A^{2}$. Does B have to equal A ? If yes, prove your answer. If no, give a counterexample.
NO. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 6 \\ 0 & 7\end{array}\right]$. We see that A is not the zero matrix and $B A$ and A^{2} are both equal to the zero matrix, but $B \neq A$.
7. Let v_{1}, v_{2}, v_{3} be vectors in \mathbb{R}^{3}. Suppose that v_{1} and v_{2} are linearly independent; v_{1} and v_{3} are linearly independent; and v_{2} and v_{3} are linearly independent. Do v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
NO. Let $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. We see that v_{1} and v_{2} are linearly independent; v_{1} and v_{3} are linearly independent; v_{2} and v_{3} are linearly independent; and v_{1}, v_{2}, v_{3} are not linearly independent because $v_{1}+v_{2}-v_{3}=0$.

