Math 544, Final Exam , Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problem 1 is worth 20 points. Each of the other problems is worth 8 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will e-mail your grade to you.
I will post the solutions on my website shortly after the class is finished.

1. Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad c=\left[\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right]
$$

(a) Find the general solution of $A x=b$. List three specific solutions, if possible. Check your solutions.
(b) Find the general solution of $A x=c$. List three specific solutions, if possible. Check your solutions.
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.
(e) Find a basis for the row space of A.
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).
2. Let $U \subseteq V$ be vector spaces. Is it always true that $\operatorname{dim} U \leq \operatorname{dim} V$? If yes, prove your answer. If no, give an example.
3. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Suppose v_{1}, v_{2}, and v_{3} are linearly independent in V. Do $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ have to be linearly independent in W ? If yes, prove your answer. If no, give an example.
4. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Suppose v_{1}, v_{2}, and v_{3} are vectors in V and $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ are linearly independent in W. Do v_{1}, v_{2}, and v_{3} have to be linearly independent in V ? If yes, prove your answer. If no, give an example.
5. Let A be an $n \times n$ matrix. Let v_{1} and v_{2} be non-zero vectors in \mathbb{R}^{n} with $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$, where λ_{1} and λ_{2} are distinct real numbers. Prove that v_{1} and v_{2} are linearly independent.
6. Let $A=\left[\begin{array}{cccc}1 & -1 & -1 & -2 \\ 1 & 1 & -1 & -2 \\ 1 & 0 & 2 & -2 \\ 2 & 0 & 0 & 3\end{array}\right]$. Find the inverse of A. You may do the problem any way you like; however, you might want to notice that the columns of A form an orthogonal set.
7. Let $A=\left[\begin{array}{cc}-\frac{1}{2} & \frac{3}{4} \\ -\frac{3}{2} & \frac{7}{4}\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n}$.
8. Find a basis for the vector space spanned by

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right] .
$$

9. The trace of the square matrix M is the sum of the elements on the main diagonal of M. Let V be the vector space of all 3×3 matrices M with the trace of M equal to zero. Find a basis for V.
10. Recall that P_{4} is the vector space of all polynomials of degree less than or equal to four. Let W be the subspace of all polynomials in P_{4} which satisfy $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. What is the dimension of W ?
11. Let $u_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. Find vectors u_{2}, u_{3}, and u_{4} in \mathbb{R}^{4} so that $u_{1}, u_{2}, u_{3}, u_{4}$ is an orthogonal set.
