Math 544, Final Exam, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problem 1 is worth 20 points. Each of the other problems is worth 8 points. The exam is worth a total of 100 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. No **Calculators.**

I will e-mail your grade to you.

I will post the solutions on my website shortly after the class is finished.

1. Let

A =	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\frac{2}{4}$	$\frac{3}{6}$	$\frac{1}{2}$	1 1	$\frac{3}{5}$		$\begin{bmatrix} 1\\2 \end{bmatrix}$	$, \mathrm{and}$	<i>c</i> =	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	
	$\begin{vmatrix} -2 \\ 2 \end{vmatrix}$	4	6	1	2	$\ddot{5}$,	$b = \begin{bmatrix} 2\\2 \end{bmatrix},$			$\left \begin{array}{c} -\\ 2 \end{array} \right $	•
	L2	4	6	1	1	4		$\lfloor 2 \rfloor$			$\lfloor 3 \rfloor$	

- (a) Find the general solution of Ax = b. List three specific solutions, if possible. Check your solutions.
- (b) Find the general solution of Ax = c. List three specific solutions, if possible. Check your solutions.
- (c) Find a basis for the null space of A.
- (d) Find a basis for the column space of A.
- (e) Find a basis for the row space of A.
- (f) Express each column of A in terms of your answer to (d).
- (g) Express each row of A in terms of your answer to (e).
- 2. Let $U \subseteq V$ be vector spaces. Is it always true that $\dim U \leq \dim V$? If yes, prove your answer. If no, give an example.
- 3. Let V and W be vector spaces and let $T: V \to W$ be a linear transformation. Suppose v_1 , v_2 , and v_3 are linearly independent in V. Do $T(v_1)$, $T(v_2)$, and $T(v_3)$ have to be linearly independent in W? If yes, prove your answer. If no, give an example.
- 4. Let V and W be vector spaces and let $T: V \to W$ be a linear transformation. Suppose v_1 , v_2 , and v_3 are vectors in V and $T(v_1)$, $T(v_2)$, and $T(v_3)$ are linearly independent in W. Do v_1 , v_2 , and v_3 have to be linearly independent in V? If yes, prove your answer. If no, give an example.

- 5. Let A be an $n \times n$ matrix. Let v_1 and v_2 be non-zero vectors in \mathbb{R}^n with $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$, where λ_1 and λ_2 are distinct real numbers. Prove that v_1 and v_2 are linearly independent.
- 6. Let $A = \begin{bmatrix} 1 & -1 & -1 & -2 \\ 1 & 1 & -1 & -2 \\ 1 & 0 & 2 & -2 \\ 2 & 0 & 0 & 3 \end{bmatrix}$. Find the inverse of A. You may do the problem

any way you like; however, you might want to notice that the columns of A form an orthogonal set.

- 7. Let $A = \begin{bmatrix} -\frac{1}{2} & \frac{3}{4} \\ -\frac{3}{2} & \frac{7}{4} \end{bmatrix}$. Find $\lim_{n \to \infty} A^n$.
- 8. Find a basis for the vector space spanned by

$$v_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 6\\7\\8\\9 \end{bmatrix}.$$

- 9. The *trace* of the square matrix M is the sum of the elements on the main diagonal of M. Let V be the vector space of all 3×3 matrices M with the trace of M equal to zero. Find a basis for V.
- 10. Recall that P_4 is the vector space of all polynomials of degree less than or equal to four. Let W be the subspace of all polynomials in P_4 which satisfy p(1) + p(-1) = 0 and p(2) + p(-2) = 0. What is the dimension of W?

11. Let
$$u_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
. Find vectors u_2 , u_3 , and u_4 in \mathbb{R}^4 so that u_1, u_2, u_3, u_4 is

an orthogonal set.