Math 544, Final Exam , Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problem 1 is worth 20 points. Each of the other problems is worth 8 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will e-mail your grade to you.
I will post the solutions on my website shortly after the class is finished.

1. Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad c=\left[\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right] .
$$

(a) Find the general solution of $A x=b$. List three specific solutions, if possible. Check your solutions.
(b) Find the general solution of $A x=c$. List three specific solutions, if possible. Check your solutions.
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.
(e) Find a basis for the row space of A.
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).

We study the augmented matrix

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
2 & 4 & 6 & 2 & 1 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 2 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 1 & 4 & 2 & 3
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}, R_{3} \mapsto R_{3}-2 R_{1}$, and $R_{4} \mapsto R_{4}-2 R_{1}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right] .
$$

Exchange rows 2 and 3 to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}+R_{2}$ and $R_{4} \mapsto R_{4}-R_{2}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}+R_{3}$ and $R_{4} \mapsto R_{4}-R_{3}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Multiply rows 2 and 3 by -1 to obtain

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The general solution to $A x=b$ is
(a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{6}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right]$ for any x_{2}, x_{3}, x_{6} in \mathbb{R}.

Four specific solutions are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

(I obtained v_{1} by setting $x_{2}=x_{3}=x_{6}=0 ; v_{2}$ by setting $x_{2}=1, x_{3}=x_{6}=0$; v_{3} by setting $x_{3}=1, x_{2}=x_{6}=0$; and v_{4} by setting $x_{6}=1, x_{2}=x_{3}=0$.) I check that

$$
\begin{aligned}
& A v_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{2}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{3}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{4}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b . \checkmark
\end{aligned}
$$

(b) The equations $A x=c$ have NO solution.
(c) The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(d) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

are a basis for the column space of A.
(e) The vectors

$$
\begin{array}{|l}
\hline z_{1}=\left[\begin{array}{llllll|}
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \\
z_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
z_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\hline
\end{array}
$$

are a basis for the row space of A.
(f)

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 6}=A_{*, 1}+A_{*, 4}+A_{*, 5}
$$

(g)

$$
\begin{aligned}
& A_{1, *}=z_{1}+z_{2}+z_{3}, \\
& A_{2, *}=2 z_{1}+2 z_{2}+z_{3}, \\
& A_{3, *}=2 z_{1}+z_{2}+2 z_{3}, \\
& A_{4, *}=2 z_{1}+z_{2}+z_{3} .
\end{aligned}
$$

2. Let $U \subseteq V$ be vector spaces. Is it always true that $\operatorname{dim} U \leq \operatorname{dim} V$? If yes, prove your answer. If no, give an example.
YES. Every basis for U is a linearly independent set in U; hence every basis for U is a linearly independent set V. One of the dimension theorems says that every linearly independent subset of a vector space V may be extended to become a basis for V. Thus, $\operatorname{dim} U \leq \operatorname{dim} V$.
3. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Suppose v_{1}, v_{2}, and v_{3} are linearly independent in V. Do $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ have to be linearly independent in W ? If yes, prove your answer. If no, give an example.

NO. Let $V=W=\mathbb{R}^{3}$, T be the linear transformation which sends every vector to zero, and v_{1}, v_{2}, and v_{3} be the standard basis for V. We see that v_{1}, v_{2}, and v_{3} are linearly independent, but $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ are linearly dependent.
4. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Suppose v_{1}, v_{2}, and v_{3} are vectors in V and $T\left(v_{1}\right)$, $T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ are linearly independent in W. Do v_{1}, v_{2}, and v_{3} have to be linearly independent in V ? If yes, prove your answer. If no, give an example.

YES. Suppose c_{1}, c_{2}, and c_{3} are numbers with $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$ in V. Apply the linear transformation T to see that

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right)=T(0)
$$

The function T is a linear transformation so the left side is equal to $c_{1} T\left(v_{1}\right)+$ $c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)$ and the right side is 0 . The vectors $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ are linearly independent; thus, the ONLY linear combination of these vectors which adds to zero has $c_{1}=c_{2}=c_{3}=0$.
5. Let A be an $n \times n$ matrix. Let v_{1} and v_{2} be non-zero vectors in \mathbb{R}^{n} with $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$, where λ_{1} and λ_{2} are distinct real numbers. Prove that v_{1} and v_{2} are linearly independent.

Suppose

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=0 \tag{1}
\end{equation*}
$$

Multiply both sides of (1) by A to get

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{2}
\end{equation*}
$$

Multiply both sides of equation (1) by λ_{2} to get

$$
\begin{equation*}
c_{1} \lambda_{2} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{3}
\end{equation*}
$$

Subtract (2) minus (3) to get

$$
c_{1}\left(\lambda_{1}-\lambda_{2}\right) v_{1}=0
$$

The vector v_{1} is not zero. If a scalar times v_{1} is zero, then the scalar must be zero. Thus, the scalar $c_{1}\left(\lambda_{1}-\lambda_{2}\right)=0$. But, $\left(\lambda_{1}-\lambda_{2}\right)$ is not zero; so, c_{1} must be zero. Equation (1) now says that $c_{2} v_{2}=0$. The vector v_{2} is not zero; so, the scalar c_{2} must be zero.
6. Let $A=\left[\begin{array}{cccc}1 & -1 & -1 & -2 \\ 1 & 1 & -1 & -2 \\ 1 & 0 & 2 & -2 \\ 2 & 0 & 0 & 3\end{array}\right]$. Find the inverse of A. You may do the problem any way you like; however, you might want to notice that the columns of A form an orthogonal set.

We see that

$$
A^{\mathrm{T}} A=\left[\begin{array}{cccc}
7 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 21
\end{array}\right]
$$

Multiply both sides of the equation on the left by

$$
\left[\begin{array}{cccc}
\frac{1}{7} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{21}
\end{array}\right],
$$

to see that

$$
\left[\begin{array}{cccc}
\frac{1}{7} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{21}
\end{array}\right] A^{\mathrm{T}} A=I
$$

Thus, the inverse of A is

$$
\left[\begin{array}{cccc}
\frac{1}{7} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{21}
\end{array}\right] A^{\mathrm{T}}=\left[\begin{array}{cccc}
\frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
-\frac{1}{6} & -\frac{1}{6} & \frac{1}{3} & 0 \\
-\frac{2}{21} & -\frac{2}{21} & -\frac{2}{21} & \frac{1}{7}
\end{array}\right]
$$

Check that $A A^{-1}=A^{-1} A=I$.
7. Let $A=\left[\begin{array}{cc}-\frac{1}{2} & \frac{3}{4} \\ -\frac{3}{2} & \frac{7}{4}\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n}$.

Diagonalize A :

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] .
$$

So,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} A^{n}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \lim _{n \rightarrow \infty}\left[\begin{array}{cc}
\left(\frac{1}{4}\right)^{n} & 0 \\
0 & 1^{n}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right] .
\end{gathered}
$$

8. Find a basis for the vector space spanned by

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right] .
$$

Find a basis for the column space of

$$
\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
2 & 4 & 6 & 7 \\
3 & 6 & 7 & 8 \\
4 & 8 & 8 & 9
\end{array}\right]
$$

Apply

$$
R_{2} \mapsto R_{2}-2 R_{1}, \quad R_{3} \mapsto R_{3}-3 R_{1}, \quad R_{4} \mapsto R_{4}-4 R_{1}
$$

to get

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 6 \\
0 & 0 & -4 & -5 \\
0 & 0 & -8 & -10 \\
0 & 0 & -12 & -15
\end{array}\right] .
$$

Apply

$$
R_{3} \mapsto R_{3}-2 R_{2}, \quad R_{4} \mapsto R_{4}-3 R_{2}
$$

to get

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 6 \\
0 & 0 & -4 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Apply

$$
R_{2} \mapsto-\frac{1}{4} R_{2}
$$

to get

$$
\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
0 & 0 & 1 & \frac{5}{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-5 R_{2}$ to get

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -\frac{1}{4} \\
0 & 0 & 1 & \frac{5}{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

So v_{1}, v_{3} is a basis for the vector space spanned by $v_{1}, v_{2}, v_{3}, v_{4}$. It is clear that v_{1} and v_{3} are linearly independent. Furthermore, $v_{2}=2 v_{1}$, and $v_{4}=\frac{1}{4}\left(5 v_{3}-v_{1}\right)$.
9. The trace of the square matrix M is the sum of the elements on the main diagonal of M. Let V be the vector space of all 3×3 matrices M with the trace of M equal to zero. Find a basis for V.

The matrices

$$
\begin{array}{cc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right],} & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right],}
\end{array}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],, ~\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],, ~\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

are all in V. These matrices are clearly linearly independent. So, $\operatorname{dim} V \geq 8$. On the other hand, V is a proper subspace of $\operatorname{Mat}_{3 \times 3}(\mathbb{R})$ because $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is in $\operatorname{Mat}_{3 \times 3}(\mathbb{R})$ but is not in V. It follows that $\operatorname{dim} V<\operatorname{dim}_{\operatorname{Mat}}^{3 \times 3}(\mathbb{R})=9$. Thus, $\operatorname{dim} V=8$ and the eight matrices that we have listed form a basis for V.
10. Recall that \mathcal{P}_{4} is the vector space of all polynomials of degree less than or equal to four. Let W be the subspace of all polynomials in \mathcal{P}_{4} which satisfy $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. What is the dimension of W ?

Consider the linear transformation $T: \mathcal{P}_{4} \rightarrow \mathbb{R}^{2}$, which is given by $T(p(x))=$ $\left[\begin{array}{l}p(1)+p(-1) \\ p(2)+p(-2)\end{array}\right]$. The vector space W is the null space of T. So the dimension of W is equal to the dimension of \mathcal{P}_{4} minus the dimension of the image of T. We know that $\operatorname{dim} \mathcal{P}_{4}=5$, since $1, x, x^{2}, x^{3}, x^{4}$ is a basis for \mathcal{P}_{4}. The image of T is all of \mathbb{R}^{2} because the image of T is a subspace of \mathbb{R}^{2} which contains $T(1)=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $T\left(x^{2}\right)=\left[\begin{array}{l}2 \\ 8\end{array}\right]$. The vectors $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 8\end{array}\right]$ span \mathbb{R}^{2}. We conclude that

$$
\operatorname{dim} W=5-2=3 .
$$

There are many other ways to reach this answer. The most straightforward thing to do is to calculate a basis for W. One such basis is $x, x^{3},\left(x^{2}-1\right)\left(x^{2}-4\right)$.
11. Let $u_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. Find vectors u_{2}, u_{3}, and u_{4} in \mathbb{R}^{4} so that $u_{1}, u_{2}, u_{3}, u_{4}$ is an orthogonal set.
You could apply the Gram-Schmidt procedure to

$$
u_{1}, v_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{c}
-4 \\
0 \\
0 \\
1
\end{array}\right]
$$

I choose v_{2}, v_{3}, v_{4} to be perpendiclar to u_{1}. Or you could apply the Gram-Schmidt procedure to

$$
u_{1}, v_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], v_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Of course, Gram-Schmidt will end up telling us that one of these 5 vectors can be written interms of the other four. But that is fine. At any rate, one orthogonal basis that contains u_{1} is

$$
u_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], u_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], u_{3}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{l}
-2 \\
-4 \\
-6 \\
-7
\end{array}\right] .
$$

Be sure to notice that my vectors do form an orthogonal set.

