
Math 544, Final Exam , Summer 2005
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc.; although, by using
enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problem 1 is worth 20 points. Each of the other problems
is worth 8 points. The exam is worth a total of 100 points. SHOW your
work. CIRCLE your answer. CHECK your answer whenever possible. No
Calculators.

I will e-mail your grade to you.

I will post the solutions on my website shortly after the class is finished.

1. Let

A =




1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4


 , b =




1
2
2
2


 , and c =




1
2
2
3


 .

(a) Find the general solution of Ax = b . List three specific solutions,
if possible. Check your solutions.

(b) Find the general solution of Ax = c . List three specific solutions,
if possible. Check your solutions.

(c) Find a basis for the null space of A .
(d) Find a basis for the column space of A .
(e) Find a basis for the row space of A .
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).

We study the augmented matrix




1 2 3 1 1 3 1 1
2 4 6 2 1 5 2 2
2 4 6 1 2 5 2 2
2 4 6 1 1 4 2 3


 .

Apply R2 7→ R2 − 2R1 , R3 7→ R3 − 2R1 , and R4 7→ R4 − 2R1 to obtain




1 2 3 1 1 3 1 1
0 0 0 0 −1 −1 0 0
0 0 0 −1 0 −1 0 0
0 0 0 −1 −1 −2 0 1


 .
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Exchange rows 2 and 3 to obtain



1 2 3 1 1 3 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 −1 −1 −2 0 1


 .

Apply R1 7→ R1 + R2 and R4 7→ R4 − R2 to obtain



1 2 3 0 1 2 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 −1 −1 0 1


 .

Apply R1 7→ R1 + R3 and R4 7→ R4 − R3 to obtain



1 2 3 0 0 1 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1


 .

Multiply rows 2 and 3 by −1 to obtain



1 2 3 0 0 1 1 1
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1


 .

The general solution to Ax = b is

(a)




x1

x2

x3

x4

x5

x6




=




1
0
0
0
0
0




+ x2




−2
1
0
0
0
0




+ x3




−3
0
1
0
0
0




+ x6




−1
0
0
−1
−1
1




for any x2, x3, x6 in R.

Four specific solutions are

v1 =




1
0
0
0
0
0




, v2 =




−1
1
0
0
0
0




, v3 =




−2
0
1
0
0
0




, v4 =




0
0
0
−1
−1
1




.
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(I obtained v1 by setting x2 = x3 = x6 = 0 ; v2 by setting x2 = 1, x3 = x6 = 0 ;
v3 by setting x3 = 1, x2 = x6 = 0 ; and v4 by setting x6 = 1, x2 = x3 = 0 .) I
check that

Av1 =




1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4







1
0
0
0
0
0




=




1
2
2
2


 = b;X

Av2 =




1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4







−1
1
0
0
0
0




=




1
2
2
2


 = b;X

Av3 =




1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4







−2
0
1
0
0
0




=




1
2
2
2


 = b;X

Av4 =




1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4







0
0
0
−1
−1
1




=




1
2
2
2


 = b.X

(b) The equations Ax = c have NO solution.

(c) The vectors

w1 =




−2
1
0
0
0
0




, w2 =




−3
0
1
0
0
0




, w3 =




−1
0
0
−1
−1
1




are a basis for the null space of A .
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(d) The vectors

A∗,1 =




1
2
2
2


 , A∗,4 =




1
2
1
1


 , A∗,5 =




1
1
2
1




are a basis for the column space of A .

(e) The vectors
z1 = [ 1 2 3 0 0 1 ]
z2 = [ 0 0 0 1 0 1 ]
z3 = [ 0 0 0 0 1 1 ]

are a basis for the row space of A .

(f)
A∗,2 = 2A∗,1, A∗,3 = 3A∗,1, A∗,6 = A∗,1 + A∗,4 + A∗,5.

(g)
A1,∗ = z1 + z2 + z3,
A2,∗ = 2z1 + 2z2 + z3,
A3,∗ = 2z1 + z2 + 2z3,
A4,∗ = 2z1 + z2 + z3.

2. Let U ⊆ V be vector spaces. Is it always true that dimU ≤ dimV ? If
yes, prove your answer. If no, give an example.

YES. Every basis for U is a linearly independent set in U ; hence every basis for
U is a linearly independent set V . One of the dimension theorems says that every
linearly independent subset of a vector space V may be extended to become a
basis for V . Thus, dim U ≤ dimV .

3. Let V and W be vector spaces and let T : V → W be a linear
transformation. Suppose v1 , v2 , and v3 are linearly independent
in V . Do T (v1) , T (v2) , and T (v3) have to be linearly independent in
W ? If yes, prove your answer. If no, give an example.

NO. Let V = W = R
3 , T be the linear transformation which sends every vector

to zero, and v1 , v2 , and v3 be the standard basis for V . We see that v1 ,
v2 , and v3 are linearly independent, but T (v1) , T (v2) , and T (v3) are linearly
dependent.
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4. Let V and W be vector spaces and let T : V → W be a linear
transformation. Suppose v1 , v2 , and v3 are vectors in V and T (v1) ,
T (v2) , and T (v3) are linearly independent in W . Do v1 , v2 , and v3

have to be linearly independent in V ? If yes, prove your answer. If
no, give an example.

YES. Suppose c1 , c2 , and c3 are numbers with c1v1 + c2v2 + c3v3 = 0 in V .
Apply the linear transformation T to see that

T (c1v1 + c2v2 + c3v3) = T (0).

The function T is a linear transformation so the left side is equal to c1T (v1) +
c2T (v2) + c3T (v3) and the right side is 0 . The vectors T (v1) , T (v2) , and T (v3)
are linearly independent; thus, the ONLY linear combination of these vectors which
adds to zero has c1 = c2 = c3 = 0 .

5. Let A be an n × n matrix. Let v1 and v2 be non-zero vectors in R
n

with Av1 = λ1v1 and Av2 = λ2v2 , where λ1 and λ2 are distinct real
numbers. Prove that v1 and v2 are linearly independent.

Suppose

(1) c1v1 + c2v2 = 0.

Multiply both sides of (1) by A to get

(2) c1λ1v1 + c2λ2v2 = 0.

Multiply both sides of equation (1) by λ2 to get

(3) c1λ2v1 + c2λ2v2 = 0.

Subtract (2) minus (3) to get

c1(λ1 − λ2)v1 = 0.

The vector v1 is not zero. If a scalar times v1 is zero, then the scalar must be
zero. Thus, the scalar c1(λ1 − λ2) = 0 . But, (λ1 − λ2) is not zero; so, c1 must
be zero. Equation (1) now says that c2v2 = 0 . The vector v2 is not zero; so, the
scalar c2 must be zero.
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6. Let A =




1 −1 −1 −2
1 1 −1 −2
1 0 2 −2
2 0 0 3


 . Find the inverse of A . You may do the

problem any way you like; however, you might want to notice that the
columns of A form an orthogonal set.

We see that

ATA =




7 0 0 0
0 2 0 0
0 0 6 0
0 0 0 21


 .

Multiply both sides of the equation on the left by


1
7 0 0 0
0 1

2 0 0
0 0 1

6 0
0 0 0 1

21


 ,

to see that 


1
7 0 0 0
0 1

2 0 0
0 0 1

6 0
0 0 0 1

21


ATA = I.

Thus, the inverse of A is



1
7 0 0 0
0 1

2 0 0
0 0 1

6 0
0 0 0 1

21


AT =




1
7

1
7

1
7

2
7

− 1
2

1
2 0 0

− 1
6 − 1

6
1
3 0

− 2
21 − 2

21 − 2
21

1
7




Check that AA−1 = A−1A = I .

7. Let A =
[−1

2
3
4

− 3
2

7
4

]
. Find lim

n→∞An .

Diagonalize A :

A =
[

1 1
1 2

] [
1
4 0
0 1

] [
2 −1
−1 1

]
.

So,

lim
n→∞An =

[
1 1
1 2

]
lim

n→∞

[ (
1
4

)n 0
0 1n

] [
2 −1
−1 1

]

=
[

1 1
1 2

] [
0 0
0 1

] [
2 −1
−1 1

]
=

[
0 1
0 2

] [
2 −1
−1 1

]
=

[−1 1
−2 2

]
.
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8. Find a basis for the vector space spanned by

v1 =




1
2
3
4


 , v2 =




2
4
6
8


 , v3 =




5
6
7
8


 , v4 =




6
7
8
9


 .

Find a basis for the column space of


1 2 5 6
2 4 6 7
3 6 7 8
4 8 8 9




Apply
R2 7→ R2 − 2R1, R3 7→ R3 − 3R1, R4 7→ R4 − 4R1

to get 


1 2 5 6
0 0 −4 −5
0 0 −8 −10
0 0 −12 −15


 .

Apply
R3 7→ R3 − 2R2, R4 7→ R4 − 3R2

to get 


1 2 5 6
0 0 −4 −5
0 0 0 0
0 0 0 0


 .

Apply

R2 7→ −1
4
R2

to get 


1 2 5 6
0 0 1 5

4
0 0 0 0
0 0 0 0


 .

Apply R1 7→ R1 − 5R2 to get 


1 2 0 − 1
4

0 0 1 5
4

0 0 0 0
0 0 0 0


 .

So v1, v3 is a basis for the vector space spanned by v1, v2, v3, v4 . It is clear that
v1 and v3 are linearly independent. Furthermore, v2 = 2v1 , and v4 = 1

4 (5v3−v1) .
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9. The trace of the square matrix M is the sum of the elements on the
main diagonal of M . Let V be the vector space of all 3 × 3 matrices
M with the trace of M equal to zero. Find a basis for V .

The matrices

 1 0 0

0 −1 0
0 0 0


 ,


 1 0 0

0 0 0
0 0 −1


 ,


 0 1 0

0 0 0
0 0 0


 ,


 0 0 1

0 0 0
0 0 0


 ,


 0 0 0

1 0 0
0 0 0


 ,


 0 0 0

0 0 1
0 0 0


 ,


 0 0 0

0 0 0
1 0 0


 ,


 0 0 0

0 0 0
0 1 0




are all in V . These matrices are clearly linearly independent. So, dimV ≥ 8 . On

the other hand, V is a proper subspace of Mat3×3(R) because


 1 0 0

0 0 0
0 0 0


 is in

Mat3×3(R) but is not in V . It follows that dimV < dim Mat3×3(R) = 9 . Thus,
dimV = 8 and the eight matrices that we have listed form a basis for V .

10. Recall that P4 is the vector space of all polynomials of degree less
than or equal to four. Let W be the subspace of all polynomials in
P4 which satisfy p(1) + p(−1) = 0 and p(2) + p(−2) = 0 . What is the
dimension of W ?

Consider the linear transformation T : P4 → R
2 , which is given by T (p(x)) =[

p(1) + p(−1)
p(2) + p(−2)

]
. The vector space W is the null space of T . So the dimension of

W is equal to the dimension of P4 minus the dimension of the image of T . We
know that dimP4 = 5 , since 1, x, x2, x3, x4 is a basis for P4 . The image of T is

all of R
2 because the image of T is a subspace of R

2 which contains T (1) =
[

2
2

]

and T (x2) =
[

2
8

]
. The vectors

[
2
2

]
and

[
2
8

]
span R

2 . We conclude that

dimW = 5 − 2 = 3 .

There are many other ways to reach this answer. The most straightforward thing
to do is to calculate a basis for W . One such basis is x, x3, (x2 − 1)(x2 − 4) .
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11. Let u1 =




1
2
3
4


 . Find vectors u2 , u3 , and u4 in R

4 so that u1, u2, u3, u4

is an orthogonal set.

You could apply the Gram-Schmidt procedure to

u1, v2 =



−2
1
0
0


 , v3 =



−3
0
1
0


 , v4 =



−4
0
0
1




I choose v2, v3, v4 to be perpendiclar to u1 . Or you could apply the Gram-Schmidt
procedure to

u1, v2 =




1
0
0
0


 , v3 =




0
1
0
0


 , v4 =




0
0
1
0


 , v5 =




0
0
0
1


 .

Of course, Gram-Schmidt will end up telling us that one of these 5 vectors can be
written interms of the other four. But that is fine. At any rate, one orthogonal
basis that contains u1 is

u1 =




1
2
3
4


 , u2 =



−2
1
0
0


 , u3 =



−3
−6
5
0


 , u4 =



−2
−4
−6
−7


 .

Be sure to notice that my vectors do form an orthogonal set.


