Math 544, Exam 4, Summer 2005 Solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Problem 1 is worth 8 points. Each of the other problems is worth 7 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let $U \subseteq V$ be subspaces of \mathbb{R}^{n} with $\operatorname{dim} U=\operatorname{dim} V$. Do U and V HAVE to be equal? If yes, prove your answer. If no, give an example.

YES. Let u_{1}, \ldots, u_{r} be a basis for U. Thus u_{1}, \ldots, u_{r} is a linearly independent set in the vector space V. One of the dimension theorems tells us that u_{1}, \ldots, u_{r} is the begining of a basis for V; that is, we may adjoin more vectors to this list, if necessary, to get a basis for V. However every basis for V has $\operatorname{dim} V$ vectors and $\operatorname{dim} V=\operatorname{dim} U=r$. Thus, u_{1}, \ldots, u_{r} is already a basis for V. Thus U and V are both spanned by u_{1}, \ldots, u_{r} and $U=V$.

2. Define "span". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p}, in the vector space V, span V if every vector in V is equal to a liner combination of the vectors v_{1}, \ldots, v_{p}.
3. Define "linear transformation". Use complete sentences. Include everything that is necessary, but nothing more.

Let V and W be vector spaces. The function $T: V \rightarrow W$ is a linear transformation if $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T\left(c v_{1}\right)=c T\left(v_{1}\right)$ for all vectors v_{1} and v_{2} in V and all scalars c in \mathbb{R}.
4. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$.
We see that

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]-2\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)-2 T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]-2\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
-12 \\
-15
\end{array}\right] .
\end{aligned}
$$

5. Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 1 & 1 & 2\end{array}\right]$. CHECK your answer.
One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $u_{1}=v_{1}$. Let

$$
w_{2}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=2 w_{2}=\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right]
$$

Before you go any further, be sure to notice that $A u_{2}=0$ and $u_{1}^{\mathrm{T}} u_{2}=0$. Let

$$
w_{3}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{2}{6}\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
-\frac{2}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

Let

$$
u_{3}=3 w_{3}=\left[\begin{array}{c}
-2 \\
-2 \\
-2 \\
3
\end{array}\right]
$$

be sure to check $A u_{3}=0, u_{1}^{\mathrm{T}} u_{3}=0$, and $u_{2}^{\mathrm{T}} u_{3}=0$. Our answer is

$$
u_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-2 \\
-2 \\
-2 \\
3
\end{array}\right]
$$

6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $y=\sqrt{3} x$. Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}. CHECK your answer.

The line $y=\sqrt{3} x$ makes the angle $\theta=\frac{\pi}{3}$ with the x-axis. (If need be draw the right triangle with base 1 and height $\sqrt{3}$. The hypothenus is 2 . So the angle of inclination, θ, has $\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{1}{2}$ and $\sin \theta=\frac{\mathrm{op}}{\text { hyp }}=\frac{\sqrt{3}}{2}$. Thus $\theta=\frac{\pi}{3}$.) It follows that

$$
M=\left[\begin{array}{cc}
\cos \frac{2 \pi}{3} & \sin \frac{2 \pi}{3} \\
\sin \frac{2 \pi}{3} & -\cos \frac{2 \pi}{3}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] .
$$

The best check is to make sure that $M v=v$ for some vector on $y=\sqrt{3} x$ (like for example $v=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$); and $M w=-w$ for some vector perpendicular to $y=\sqrt{3} x$ (like for example $w=\left[\begin{array}{c}\sqrt{3} \\ -1\end{array}\right]$). This happens.
7. Let $A=\left[\begin{array}{cc}-1 & -10 \\ 5 & 14\end{array}\right]$. Find a matrix B with $B^{2}=A$. CHECK your answer.

Find the eigenvalues and eigenvectors of A.

$$
0=\operatorname{det}(A-\lambda I)=(-1-\lambda)(14-\lambda)+50=\lambda^{2}-13 \lambda+36=(\lambda-4)(\lambda-9) .
$$

So the eigenvalues of A are 4 and 9 . The eigenspace belonging to 4 is spanned by $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. The eigenspace belonging to 9 is spanned by $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Let

$$
S=\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right] .
$$

Observe that $A S=S D$. We see that $S^{-1}=\left[\begin{array}{cc}-1 & -1 \\ 1 & 2\end{array}\right]$. Let

$$
\begin{gathered}
B=S\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-4 & -3 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right] \\
\\
=\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right] .
\end{gathered}
$$

We check that

$$
B^{2}=\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 & -10 \\
5 & 14
\end{array}\right]=A
$$

