Math 544, Exam 3, Summer 2005, solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Problem 1 is worth 14 points. Each of the other problems is worth 6 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let A be the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 4 & 2 & 4 \\
1 & 3 & 4 & 3 & 6 \\
2 & 6 & 8 & 5 & 10
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) Write each column of A as a linear combination of your answer to (b).
(e) Write each row of A as a linear combination of your answer to (c).

Apply elementary row operations $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 4 & 2 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] .
$$

Apply elementary row operations $R_{1} \mapsto R_{1}-2 R_{2}$ and $R_{3} \mapsto R_{3}-R_{2}$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The nullspace of A is the set of all vectors:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

where x_{2}, x_{3}, and x_{5} are free to take any value.
(a) It follows that the vectors

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

form a basis for the null space of A.
(b) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { and } \quad A_{*, 4}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]
$$

form a basis for the column space of A.
(c) The vectors

$$
w_{1}=\left[\begin{array}{lllll}
1 & 3 & 4 & 0 & 0
\end{array}\right] \quad \text { and } \quad w_{2}=\left[\begin{array}{lllll|}
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

form a basis for the row space of A.
(d) We see that

$$
\begin{gathered}
A_{*, 1}=A_{*, 1} \\
A_{*, 2}=3 A_{*, 1} \\
A_{*, 3}=4 A_{*, 1} \\
A_{*, 4}=A_{*, 4} \\
A_{*, 5}=2 A_{*, 4} \\
\hline
\end{gathered}
$$

(e) We see that

$$
\begin{array}{|c|}
\hline A_{1, *}=1 w_{1}+2 w_{2} \\
A_{2, *}=w_{1}+3 w_{2} \\
A_{3, *}=2 w_{1}+5 w_{2} \\
\hline
\end{array}
$$

2. Let $U \subseteq V$ be subspaces of \mathbb{R}^{n} with $\operatorname{dim} U=\operatorname{dim} V$. Do U and V HAVE to be equal? If yes, prove your answer. If no, give an example.

YES. Let u_{1}, \ldots, u_{r} be a basis for U. Thus u_{1}, \ldots, u_{r} is a linearly independent set in the vector space V. One of the dimension theorems tells us that u_{1}, \ldots, u_{r} is the begining of a basis for V; that is, we may adjoin more vectors to this list, if necessary, to get a basis for V. However every basis for V has $\operatorname{dim} V$ vectors and $\operatorname{dim} V=\operatorname{dim} U=r$. Thus, u_{1}, \ldots, u_{r} is already a basis for V. Thus U and V are both spanned by u_{1}, \ldots, u_{r} and $U=V$.
3. Let A and B be $n \times n$ matrices. Does the null space of $A B$ HAVE to be a subset of the null space of A ? If yes, prove your answer. If no, give an example.

NO. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

So,

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

We see that $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in the null space of $A B$, because $A B v=0$; but v is not in the null space of A, because $A v=v \neq 0$.
4. Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.

The null space of the matrix A is the set of all column vectors x with $A x=0$.
5. Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The dimension of the vector space V is the number of vectors in a basis for V.
6. Let

$$
V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 2 x_{1}+3 x_{3}-4 x_{3}=5\right\} .
$$

Is V a vector space? Explain thoroughly.
NO. The vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in V.
7. Let $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ be fixed elements of \mathbb{R}^{3}, and let

$$
V=\left\{\left.x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a^{\mathrm{T}} x=0 \text { and } b^{\mathrm{T}} x=0\right\}
$$

Is V a vector space? Explain thoroughly.
YES. The set V is the null space of

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

The null space of any matrix is a vector space.

