Math 544, Exam 3, Summer 2005, solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Problem 1 is worth 14 points. Each of the other problems is worth 6 points. The exam is worth a total of 50 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let A be the matrix

$$A = \begin{bmatrix} 1 & 3 & 4 & 2 & 4 \\ 1 & 3 & 4 & 3 & 6 \\ 2 & 6 & 8 & 5 & 10 \end{bmatrix}$$

- (a) Find a basis for the null space of A.
- (b) Find a basis for the column space of A.
- (c) Find a basis for the row space of A.
- (d) Write each column of A as a linear combination of your answer to (b).
- (e) Write each row of A as a linear combination of your answer to (c).

Apply elementary row operations $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - 2R_1$ to get

$$\begin{bmatrix} 1 & 3 & 4 & 2 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Apply elementary row operations $R_1 \mapsto R_1 - 2R_2$ and $R_3 \mapsto R_3 - R_2$ to get

$$\begin{bmatrix} 1 & 3 & 4 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The nullspace of A is the set of all vectors:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix},$$

where x_2 , x_3 , and x_5 are free to take any value.

(a) It follows that the vectors

$v_1 =$	$\begin{bmatrix} -3\\1\\0\\0\\0\end{bmatrix}$	$, v_2 =$	$\begin{bmatrix} -4\\0\\1\\0\\0\end{bmatrix}$,	and	$v_{3} =$	$\begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$

form a basis for the null space of A.

(b) The vectors

$$A_{*,1} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} \quad \text{and} \quad A_{*,4} = \begin{bmatrix} 2\\3\\5 \end{bmatrix}$$

form a basis for the column space of A.

(c) The vectors

$$w_1 = \begin{bmatrix} 1 & 3 & 4 & 0 & 0 \end{bmatrix}$$
 and $w_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \end{bmatrix}$

form a basis for the row space of A.

(d) We see that

(e) We see that

$$A_{1,*} = 1w_1 + 2w_2$$

$$A_{2,*} = w_1 + 3w_2$$

$$A_{3,*} = 2w_1 + 5w_2$$

2. Let $U \subseteq V$ be subspaces of \mathbb{R}^n with $\dim U = \dim V$. Do U and V HAVE to be equal? If yes, prove your answer. If no, give an example.

YES. Let u_1, \ldots, u_r be a basis for U. Thus u_1, \ldots, u_r is a linearly independent set in the vector space V. One of the dimension theorems tells us that u_1, \ldots, u_r is the beginnig of a basis for V; that is, we may adjoin more vectors to this list, if necessary, to get a basis for V. However every basis for V has dim V vectors and dim $V = \dim U = r$. Thus, u_1, \ldots, u_r is already a basis for V. Thus U and V are both spanned by u_1, \ldots, u_r and U = V.

3. Let A and B be $n \times n$ matrices. Does the null space of AB HAVE to be a subset of the null space of A? If yes, prove your answer. If no, give an example.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

So,

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

We see that $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is in the null space of AB, because ABv = 0; but v is not in the null space of A, because $Av = v \neq 0$.

4. Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.

The null space of the matrix A is the set of all column vectors x with Ax = 0.

5. Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The <u>dimension</u> of the vector space V is the number of vectors in a basis for V.

6. Let

$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \middle| 2x_1 + 3x_3 - 4x_3 = 5 \right\}.$$

Is V a vector space? Explain thoroughly.

NO. The vector
$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
 is not in V .

7. Let
$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ be fixed elements of \mathbb{R}^3 , and let
$$V = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \middle| a^{\mathrm{T}}x = 0 \text{ and } b^{\mathrm{T}}x = 0 \right\}.$$

Is V a vector space? Explain thoroughly.

YES. The set V is the null space of

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}.$$

The null space of any matrix is a vector space.