Math 544, Exam 2, Summer 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Problem 1 is worth 8 points. Each of the other problems is worth 7 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+\quad a x_{2} & =1 \\
a x_{1}+(3 a-2) x_{2} & =2 .
\end{aligned}
$$

(a) Find all values of a which cause the system to have no solution?
(b) Find all values of a which cause the system to have exactly one solution?
(c) Find all values of a which cause the system to have an infinite number of solutions?
Explain thoroughly.
Apply the row operation $R_{2} \mapsto R_{2}-a R_{1}$ to the matrix

$$
\left[\begin{array}{cc|c}
1 & a & 1 \\
a & 3 a-2 & 2
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{cc|c}
1 & a & 1 \\
0 & -a^{2}+3 a-2 & 2-a
\end{array}\right]
$$

If $-a^{2}+3 a-2 \neq 0$, then the system of equations has a unique solution. Of course, $-a^{2}+3 a-2=0$, when $a^{2}-3 a+2=0$, that is, $(a-2)(a-1)=0$.
(b) If $a \neq 1,2$, then the system of equations has a unique solution.

If $a=2$, then the system of equations is:

$$
\begin{array}{r}
x_{1}+2 x_{2}=1 \\
2 x_{1}+4 x_{2}=2 .
\end{array}
$$

These two equations represent the same line. There are infinitely many points on this line.

$$
\text { (c) If } a=2 \text {, then the system of equations has infinitely many solutions. }
$$

If $a=1$, then the system of equations is

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}=2 .
\end{aligned}
$$

These equations represent parallel lines. Parallel lines do not intersect.
(a) If $a=1$, then the system of equations has no solution.
2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{m} are linearly independent if the ONLY numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. Define "linear combination". Use complete sentences. Include everything that is necessary, but nothing more.

Let v_{1}, \ldots, v_{p}, and v be vectors in \mathbb{R}^{m}. The vector v is a linear combination of the vectors v_{1}, \ldots, v_{p} if there exist numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=v$.
4. Let A be an $n \times n$ matrix. List three statements that are equivalent to " A is non-singular".

The following statements are equivalent.
(0) The matrix A is non-singular. (That is, the only vector x with $A x=0$ is the zero vector.)
(1) The columns of A are linearly independent.
(2) The system of equations $A x=b$ has a unique solution for all column vectors b in \mathbb{R}^{n}.
(3) The matrix A is invertible.
5. Let A and B be $n \times n$ matrices with $A B$ equal to the identity matrix. PROVE $B A$ is equal to the identity matrix. ("We did this in class" is not a satisfactory answer. I expect a complete, coherent proof. You are allowed to use any relevant part of problem 4.)

We first see that the matrix B is non-singular. Indeed, if x is a column vector with $B x=0$, then $A B x=A 0$; so, $I x=0$; that is, $x=0$. We have established that the only vector x with $B x=0$ is $x=0$. This tells us that B is non-singular.

Apply problem (4) to conclude that B has an inverse. This inverse is a matrix C with $B C=C B=I$.

Our proof is complete once we show that $C=A$. Look at the product $A B C$. On the one hand, $A B C=(A B) C=I C=C$. On the other hand, $A B C=A(B C)=A I=A$. Thus, $A=C$, and $B A=B C=I$.
6. Find the general solution of the following system of linear equations.

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}+x_{4}=2 \\
& x_{1}+2 x_{2}+4 x_{3}+2 x_{4}=3 .
\end{aligned}
$$

Also find three particular solutions of this system of equations. Be sure to check that all three of your particular solutions really satisfy the original system of linear equations.

Apply $R_{2} \mapsto R_{2}-R_{1}$ to

$$
\left[\begin{array}{llll|l}
1 & 2 & 3 & 1 & 2 \\
1 & 2 & 4 & 2 & 3
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{llll|l}
1 & 2 & 3 & 1 & 2 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-3 R_{2}$ to obtain

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & -2 & -1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

The general solution of the system of equations is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right]
$$

$$
\text { where } x_{2} \text { and } x_{4} \text { are free to take any value. }
$$

Three particular solutions are

$$
v_{1}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

For v_{1}, I took $x_{2}=x_{4}=0$. For v_{2}, I took $x_{2}=1$ and $x_{4}=0$. For v_{3}, I took $x_{2}=0$ and $x_{4}=1$. I checked that each particular solution works.
7. Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{\mathrm{T}} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.

Suppose c_{1}, c_{2}, and c_{3} are numbers with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{*}
\end{equation*}
$$

Multiply by v_{1}^{T} to get

$$
c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}+c_{2} \cdot v_{1}^{\mathrm{T}} v_{2}+c_{3} \cdot v_{1}^{\mathrm{T}} v_{3}=0 .
$$

The hypothesis tells us that $v_{1}^{\mathrm{T}} v_{2}=0$ and $v_{1}^{\mathrm{T}} v_{3}=0$. So, $c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}=0$. The hypothesis also tells us that v_{1} is not zero; from which it follows that $v_{1}^{\mathrm{T}} v_{1} \neq 0$. We conclude that $c_{1}=0$. Multiply $\left(^{*}\right)$ by v_{2}^{T} to see that $c_{2} \cdot v_{2}^{\mathrm{T}} v_{2}=0$; hence, $c_{2}=0$, since the number $v_{2}^{\mathrm{T}} v_{2} \neq 0$. Multiply $\left(^{*}\right)$ by v_{3}^{T} to conclude that $c_{3}=0$. We have shown that each c_{i} MUST be zero. We conclude that v_{1}, v_{2}, and v_{3} are linearly independent.

