Math 544, Exam 1, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 6 problems. Problem 1 is worth 10 points. Each of the other problems is worth 8 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right]
$$

2. Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+4 a x_{2} & =4 \\
a x_{1}+\quad x_{2} & =2 .
\end{aligned}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?

Explain thoroughly.

3. Are the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
4 \\
12 \\
18
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right]
$$

linearly independent? Explain thoroughly.
4. (True or False. If true, PROVE the result. If false, give a counter EXAMPLE.) If A is a 2×2 matrix with $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, then $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
5. Let A and B be symmetric $n \times n$ matrices. Suppose that $A B$ is also a symmetric matric. Prove that $A B=B A$.
6. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}. Suppose that v_{1}, v_{2}, v_{3} are linearly dependent. Do the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ HAVE to be linearly dependent? If yes, PROVE the result. If no, show an EXAMPLE.

