Math 544, Exam 1, Summer 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 6 problems. Problem 1 is worth 10 points. Each of the other problems is worth 8 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad b=\left[\begin{array}{c}
4 \\
3 \\
5
\end{array}\right] .
$$

We apply row operations to

$$
\left[\begin{array}{llllll|l}
1 & 4 & 5 & 1 & 1 & 5 & 4 \\
1 & 4 & 5 & 2 & 1 & 8 & 3 \\
1 & 4 & 5 & 2 & 2 & 8 & 5
\end{array}\right] .
$$

Apply $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-R_{1}$ to get:

$$
\left[\begin{array}{cccccc|c}
1 & 4 & 5 & 1 & 1 & 5 & 4 \\
0 & 0 & 0 & 1 & 0 & 3 & -1 \\
0 & 0 & 0 & 1 & 1 & 3 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-R_{2}$ and $R_{3} \mapsto R_{3}-R_{2}$ to get

$$
\left[\begin{array}{llllll|c}
1 & 4 & 5 & 0 & 1 & 2 & 5 \\
0 & 0 & 0 & 1 & 0 & 3 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-R_{3}$ to get

$$
\left[\begin{array}{llllll|c}
1 & 4 & 5 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 0 & 3 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2
\end{array}\right] .
$$

The general solution of the system of equations is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
0 \\
-1 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-2 \\
0 \\
0 \\
-3 \\
0 \\
1
\end{array}\right]
$$ where x_{2}, x_{3}, and x_{6} may be any real number.

- When $x_{2}=x_{3}=x_{6}=0$, the specific solution

$$
v_{1}=\left[\begin{array}{c}
3 \\
0 \\
0 \\
-1 \\
2 \\
0
\end{array}\right]
$$

is attained. We check that

$$
A v_{1}=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right]\left[\begin{array}{c}
3 \\
0 \\
0 \\
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
3-1+2 \\
3-2+2 \\
3-2+4
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
5
\end{array}\right]=b . \checkmark
$$

- When $x_{2}=1, x_{3}=x_{6}=0$, the specific solution

$$
v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-1 \\
2 \\
0
\end{array}\right]
$$

is attained. We check that

$$
A v_{2}=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1+4-1+2 \\
-1+4-2+2 \\
-1+4-2+4
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
5
\end{array}\right]=b .
$$

- When $x_{3}=1, x_{2}=x_{6}=0$, the specific solution

$$
v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
-1 \\
2 \\
0
\end{array}\right]
$$

is attained. We check that

$$
A v_{3}=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right]\left[\begin{array}{c}
-2 \\
0 \\
1 \\
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
-2+5-1+2 \\
-2+5-2+2 \\
-2+5-2+4
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
5
\end{array}\right]=b .
$$

- When $x_{6}=1, x_{2}=x_{3}=0$, the specific solution

$$
v_{4}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-4 \\
2 \\
1
\end{array}\right]
$$

is attained. We check that

$$
A v_{4}=\left[\begin{array}{llllll}
1 & 4 & 5 & 1 & 1 & 5 \\
1 & 4 & 5 & 2 & 1 & 8 \\
1 & 4 & 5 & 2 & 2 & 8
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
-4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1-4+2+5 \\
1-8+2+8 \\
1-8+4+8
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
5
\end{array}\right]=b . \checkmark
$$

2. Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+4 a x_{2} & =4 \\
a x_{1}+\quad x_{2} & =2 .
\end{aligned}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?
Explain thoroughly.
Apply row opperations to

$$
\left[\begin{array}{cc|c}
1 & 4 a & 4 \\
a & 1 & 2
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-a R_{1}$ to get

$$
\left[\begin{array}{cc|c}
1 & 4 a & 4 \\
0 & 1-4 a^{2} & 2-4 a
\end{array}\right]
$$

If $1-4 a^{2} \neq 0$, then the system of equations has a unique solution.
If $1-4 a^{2}=0$ and $2-4 a=0$, then the system of equations has infinitely many solutions.
If $1-4 a^{2}=0$ and $2-4 a \neq 0$, then the system of equations has no solution.

We notice that $1-4 a^{2}=0$ when $(1-2 a)(1+2 a)=0$. Thus, $a=\frac{1}{2}$, or $a=-\frac{1}{2}$.
We notice that when $a=\frac{1}{2}$, then $2-4 a=0$
We notice that when $a=-\frac{1}{2}$, then $2-4 a \neq 0$.
We conclude
If a is different than $\frac{1}{2}$ and $-\frac{1}{2}$, then the system has a unique solution.
If $a=\frac{1}{2}$, then the system has infinitely many solutions.
If $a=-\frac{1}{2}$, then the system has no solution.

3. Are the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
4 \\
12 \\
18
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right]
$$

linearly independent? Explain thoroughly.

These vectors are linearly dependent , because $v_{2}=2 v_{1}+2 v_{3}$. One might solve $c_{1} v_{1}+c_{2}+v_{2}+c_{3} v_{3}=0$. Apply row operations to

$$
\left[\begin{array}{ccc}
1 & 4 & 1 \\
2 & 12 & 4 \\
3 & 18 & 6
\end{array}\right] .
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}$ and $R_{3} \mapsto R_{3}-3 R_{1}$ to get:

$$
\left[\begin{array}{lll}
1 & 4 & 1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{array}\right] .
$$

Apply $R_{2} \mapsto \frac{1}{4} R_{2}$ to get

$$
\left[\begin{array}{ccc}
1 & 4 & 1 \\
0 & 1 & \frac{1}{2} \\
0 & 6 & 3
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-6 R_{2}$ and $R_{1} \mapsto R_{1}-4 R_{2}$ to get

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right] .
$$

So c_{3} is a free variable, $c_{1}=c_{3}$, and $c_{2}=-\left(\frac{1}{2}\right) c_{3}$. In particular, when $c_{3}=2$, then we have $c_{1}=2$ and $c_{2}=-1$. In other words, $2 v_{1}-v_{2}+2 v_{3}=0$.
4. (True or False. If true, PROVE the result. If false, give a counter EXAMPLE.) If A is a 2×2 matrix with $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, then $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
False. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $A \neq 0$, but

$$
A^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

5. Let A and B be symmetric $n \times n$ matrices. Suppose that $A B$ is also a symmetric matric. Prove that $A B=B A$.

When all of the listed hypotheses hold, then we have

$$
A B=(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}=B A
$$

The first equality holds because $A B$ is a symmetric matrix. The second equality holds for all matrices - we proved this result in class. The last equality holds because B and A both are symmetric matrices.
6. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}. Suppose that v_{1}, v_{2}, v_{3} are linearly dependent. Do the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ HAVE to be linearly dependent? If yes, PROVE the result. If no, show an EXAMPLE.

Yes. We are told that there are numbers c_{1}, c_{2}, c_{3}, not all zero, with $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. Take the old numbers c_{1}, c_{2}, c_{3} together with $c_{4}=0$. We now have $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}=0$, and at least one of the coefficients is non-zero. The vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.

