Math 544, Final Exam, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.
There are 14 problems. Problem 1 is worth 22 points. Each of the rest of the problems is worth 6 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website shortly after the exam is finished.

1. Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad c=\left[\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right] .
$$

(a) Find the general solution of $A x=b$. List three specific solutions, if possible. Check your solutions.
(b) Find the general solution of $A x=c$. List three specific solutions, if possible. Check your solutions.
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.
(e) Find a basis for the row space of A.
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).

We study the augmented matrix

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
2 & 4 & 6 & 2 & 1 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 2 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 1 & 4 & 2 & 3
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}, R_{3} \mapsto R_{3}-2 R_{1}$, and $R_{4} \mapsto R_{4}-2 R_{1}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right]
$$

Exchange rows 2 and 3 to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}+R_{2}$ and $R_{4} \mapsto R_{4}-R_{2}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}+R_{3}$ and $R_{4} \mapsto R_{4}-R_{3}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Multiply rows 2 and 3 by -1 to obtain

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The general solution to $A x=b$ is
(a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{6}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right]$ for any x_{2}, x_{3}, x_{6} in $\left.\mathbb{R}.\right]$

Four specific solutions are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

(I obtained v_{1} by setting $x_{2}=x_{3}=x_{6}=0 ; v_{2}$ by setting $x_{2}=1, x_{3}=x_{6}=0$; v_{3} by setting $x_{3}=1, x_{2}=x_{6}=0$; and v_{4} by setting $x_{6}=1, x_{2}=x_{3}=0$.) I check that

$$
A v_{1}=\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark
$$

$$
\begin{aligned}
& A v_{2}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{3}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{4}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b . \checkmark
\end{aligned}
$$

(b) The equations $A x=c$ have NO solution.
(c) The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(d) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

are a basis for the column space of A.
(e) The vectors

$$
\left.\begin{array}{l}
z_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \\
z_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
z_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]
$$

are a basis for the row space of A.
(f)

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 6}=A_{*, 1}+A_{*, 4}+A_{*, 5}
$$

(g)

$$
\begin{aligned}
& \hline A_{1, *}=z_{1}+z_{2}+z_{3}, \\
& A_{2, *}=2 z_{1}+2 z_{2}+z_{3}, \\
& A_{3, *}=2 z_{1}+z_{2}+2 z_{3}, \\
& A_{4, *}=2 z_{1}+z_{2}+z_{3} . \\
& \hline
\end{aligned}
$$

2. Find an orthogonal basis for the null space of the matrix A from problem 1.
The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A. Let

$$
u_{1}=w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{2}^{\prime}=w_{2}-\frac{u_{1}^{\mathrm{T}} w_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{3}^{\prime}=w_{3}-\frac{u_{1}^{\mathrm{T}} w_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} w_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]-\frac{2}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]-\frac{3}{70}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
&=\frac{1}{70}\left(70\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]-28\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]-3\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0 \\
0 \\
0
\end{array}\right]\right)=\frac{1}{70}\left[\begin{array}{c}
-70+56+9 \\
-28+18 \\
-15 \\
-70 \\
-70 \\
70
\end{array}\right]=\frac{1}{70}\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
-70 \\
-70 \\
70
\end{array}\right] \\
&= {\left[\begin{array}{c}
-1 \\
-2 \\
-3 \\
-14 \\
-14 \\
14
\end{array}\right] . }
\end{aligned}
$$

We let $u_{3}=14 u_{3}^{\prime}$. Our answer is

$$
u_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0 \\
0 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-1 \\
-2 \\
-3 \\
-14 \\
-14 \\
14
\end{array}\right]
$$

We check that $u_{1}^{\mathrm{T}} u_{2}=u_{1}^{\mathrm{T}} u_{3}=u_{2}^{\mathrm{T}} u_{3}=0$, and $A u_{i}=0$ for each i.
3. Find a matrix B with $B^{2}=A$, where $A=\left[\begin{array}{cc}-5 & -9 \\ 6 & 10\end{array}\right]$.

We find the eigenvalues of A :

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
-5-\lambda & -9 \\
6 & 10-\lambda
\end{array}\right]=(-5-\lambda)(10-\lambda)+54 \\
& =4-5 \lambda+\lambda^{2}=(\lambda-1)(\lambda-4) .
\end{aligned}
$$

The eigenvalues of A are 1 and 4 .
We find the eigenvectors of A that belong to $\lambda=1$: We solve $A v=v$ or $(A-I) v=0$. So we apply Guassian elimination to

$$
A-I=\left[\begin{array}{cc}
-6 & -9 \\
6 & 9
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}+R_{1}$ to obtain

$$
\left[\begin{array}{cc}
-6 & -9 \\
0 & 0
\end{array}\right]
$$

Divide row 1 by -6 :

$$
\left[\begin{array}{cc}
1 & 3 / 2 \\
0 & 0
\end{array}\right] .
$$

One basis for the eigenspace which belongs to $\lambda=1$ is $\left[\begin{array}{c}-3 / 2 \\ 1\end{array}\right]$. Another basis for the eigenspace belonging to $\lambda=1$ is $v_{1}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. (Check that $A v_{1}=v_{1}$.)
We find the eigenvectors of A that belong to $\lambda=4$: We solve $A v=4 v$ or $(A-4 I) v=0$. So we apply Guassian elimination to

$$
A-4 I=\left[\begin{array}{cc}
-9 & -9 \\
6 & 6
\end{array}\right]
$$

Divide row 1 by -9 , to obtain

$$
\left[\begin{array}{ll}
1 & 1 \\
6 & 6
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-6 R_{1}$ to obtain

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

The vector $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ belongs to $\lambda=4$.
We see that:

$$
A\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Let $S=\left[\begin{array}{cc}-3 & -1 \\ 2 & 1\end{array}\right]$, and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$. We see that S is non-singular. We have $A=S D S^{-1}$. We see that $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$. If we let

$$
B=S\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] S^{-1}
$$

then B will square to become A. So

$$
B=S\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & -3 \\
2 & 4
\end{array}\right] .
$$

Do check that $B^{2}=A$. (There are other correct final answers.)

4. Define "linearly dependent". Use complete sentences.

The vectors v_{1}, \ldots, v_{n} of the vector space V are linearly dependent if there exist real numbers c_{1}, \ldots, c_{n}, not all of which are zero, with $\sum_{i=1}^{n} c_{i} v_{i}=0$.

5. Define "linear transformation". Use complete sentences.

The function T from the vector space V to the vector space W is a linear transformation if $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T\left(c v_{1}\right)=c T\left(v_{1}\right)$ for all v_{1} and v_{2} in V and all $c \in \mathbb{R}$.
6. Define "null space". Use complete sentences.

The null space of the matrix A is the set of all column vectors x with $A x=0$.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which fixes the origin and rotates the $x y$-plane counter-clockwise by 45 degrees. Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}.

$$
M=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] .
$$

8. Let A be a matrix, v_{1} and v_{2} be non-zero vectors, and λ_{1} and λ_{2} be real numbers. Suppose that $A v_{1}=\lambda_{1} v_{1}, A v_{2}=\lambda_{2} v_{2}$, and $\lambda_{1} \neq \lambda_{2}$. PROVE that v_{1} and v_{2} are linearly independent.

Suppose

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=0 \tag{*}
\end{equation*}
$$

Multiply (*) by A to see that

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{**}
\end{equation*}
$$

Multiply (*) by λ_{1} to see that

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{1} v_{2}=0 \tag{***}
\end{equation*}
$$

Subtract $\left({ }^{* *}\right)$ minus $\left({ }^{* * *}\right)$ to see that every entry of the column vector

$$
c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}
$$

is zero. The hypothesis tells us that $\lambda_{2}-\lambda_{1}$ is not zero. The hypothesis also tells us that some entry of v_{2} is not zero. We conclude that $c_{2}=0$. Now $c_{1} v_{1}=0$, with $v_{1} \neq 0$. Again it follows that c_{1} must also be zero. The only numbers c_{1} and c_{2} with $\left(^{*}\right)$ are $c_{1}=c_{2}=0$. The vectors v_{1} and v_{2} are linearly independent.
9. Let $T: V \rightarrow W$ be a linear transformation, and let v_{1}, v_{2}, and v_{3} be vectors in V, with $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ linearly independent. Do the vectors v_{1}, v_{2}, and v_{3} have to be linearly independent? If yes, PROVE the result. If no, give a counter EXAMPLE.
YES If

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0
$$

then apply the linear transformation T to both sides of (\star) to see that

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right)=0
$$

Use the defining properties of linear transformation to see that

$$
(\star \star) \quad c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)=0 .
$$

The hypothesis tells us that the vectors $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$ linearly independent. The only constants c_{1}, c_{2}, and c_{3} for which ($\star \star$) holds are $c_{1}=c_{2}=c_{3}=0$. We now know that the only constants for which (\star) are $c_{1}=c_{2}=c_{3}=0$. We conclude that v_{1}, v_{2}, and v_{3} are linearly independent.
10. Let V be the vector space of all polynomials $p(x)$ of degree three or less which have the property that $p(2)=0$ and $p^{\prime}(2)=0$. Find a basis for V. Explain.

One basis is $p_{1}=(x-2)^{2}, p_{2}=(x-2)^{3}$. It is easy to p_{1} and p_{2} are linearly independent elements of V. I finish my argument by showing that $\operatorname{dim} V \leq 2$. Well, $V \subsetneq W \subsetneq \mathcal{P}_{3}$, where W is the subspace of all polynomials $p(x)$ of degree three or less which have the property that $p(2)=0$ and \mathcal{P}_{3} is the vector space of all polynomials $p(x)$ of degree three or less. I know that $W \neq \mathcal{P}_{3}$ because $x \in \mathcal{P}_{3}$, but $x \notin W$. I know that $V \neq W$ because $x-2 \in W$ but $x-2 \notin V$. Thus, $\operatorname{dim} V<\operatorname{dim} W<\operatorname{dim} \mathcal{P}_{3}=4$, and $\operatorname{dim} V \leq 2$, as desired.
11. Let V be the vector space of all differentiable real-valued functions which are defined on all of \mathbb{R}. Let W be the vector space of all realvalued functions which are defined on all of \mathbb{R}. Let T from V to W be the function which is given by $T(f(x))=f^{\prime}(x)$. Is T a linear transformation? Explain very thoroughly.

YES We learned in calculus that $(f+g)^{\prime}=f^{\prime}+g^{\prime}$. We also learned in calculus that $(r f)^{\prime}=r f^{\prime}$.
12. Let A and B be $n \times n$ matrices. Is the null space of B contained in the null space of $A B$? If yes, PROVE the result. If no, give a counter EXAMPLE.

YES Let v be a vector in the null space of B. So $B v=0$. So $A B v=0$. So v is in the null space of $A B$.

13 . Let A and B be $n \times n$ matrices. Is the column space of B contained in the column space of $A B$? If yes, PROVE the result. If no, give a counter EXAMPLE.

NO . Consider $B=I$ and $A=0$. The column space of B is all of \mathbb{R}^{n}. The column space of $A B=0$ is the zero vector. It is not true that all of \mathbb{R}^{n} is contained in the zero vector.
14. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Let V be a subspace of \mathbb{R}^{4}. Suppose that $v_{1} \in V, v_{2} \in V, v_{3} \notin V$, and $v_{4} \notin V$. Do you have enough information to determine the dimension of V ? Explain very thoroughly.

NO. The vector space V could have dimension 2. (In this case v_{1} and v_{2} are a basis for V.) On the other hand, the vector space V could have dimension 3 . For example, the vector space V spanned by v_{1}, v_{2}, and
$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
has dimension 3 and does not contain v_{3} or v_{4}.

