Math 544, Exam 4, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

There are 6 problems. Problems 1 and 2 are worth 9 points each. Each of the other problems is worth 8 points. The exam is worth a total of 50 points. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

- 1. Express $v = \begin{bmatrix} 8\\9\\10 \end{bmatrix}$ as a linear combination of $v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$. (It might be helpful to notice that v_1 , v_2 and v_3 are an orthogonal set.)
- 2. Express $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ as a linear combination of $M_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, and $M_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- 3. List a basis for the vector space of 3×3 skew symmetric matrices. (No proof is needed.) Recall that the matrix M is skew-symmetric if $M^{\rm T} = -M$.
- 4. Let W be the set of all continuous functions f(x) with the property that $\int_{0}^{1} f(x)dx = 0$. Is W a vector space? Explain.
- 5. Let W be the set of all twice differentiable functions f(x) with the property that $f''(x) + f(x) = e^x$. Is W a vector space? Explain.
- 6. Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 3 & 4 & 5 \end{bmatrix}$.