Math 544, Exam 4 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

There are 6 problems. Problems 1 and 2 are worth 9 points each. Each of the other problems is worth 8 points. The exam is worth a total of 50 points. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Express
$$v = \begin{bmatrix} 8 \\ 9 \\ 10 \end{bmatrix}$$
 as a linear combination of $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$,
and $v_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$. (It might be helpful to notice that v_1 , v_2 and v_3 are
an orthogonal set.)

Multiply each side of $v = c_1v_1 + c_2v_2 + c_3v_3$ by v_1^{T} to see that $27v = 3c_1$, so $c_1 = 9$. Similar calculations give $-1 = 2c_2$; so, $c_2 = -\frac{1}{2}$; and $-3 = 6c_3$; so, $c_3 = -\frac{1}{2}$. We check that

$$9v_1 - \frac{1}{2}v_2 - \frac{1}{2}v_3 = 9\begin{bmatrix}1\\1\\1\end{bmatrix} - \frac{1}{2}\begin{bmatrix}1\\-1\\0\end{bmatrix} - \frac{1}{2}\begin{bmatrix}1\\1\\-2\end{bmatrix} = \begin{bmatrix}8\\9\\10\end{bmatrix} = v.$$

2. Express $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ as a linear combination of $M_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, and $M_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Observe that

$2M_1 - M_2 + 2M_3 + M_4 = \begin{bmatrix} 0\\0 \end{bmatrix}$	$\begin{bmatrix} 0\\2 \end{bmatrix}$	$-\begin{bmatrix}0\\0\end{bmatrix}$	$\begin{bmatrix} 1\\1 \end{bmatrix} +$	$-\begin{bmatrix}0\\2\end{bmatrix}$	$\begin{bmatrix} 2\\2 \end{bmatrix} +$	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\begin{bmatrix} 1\\1 \end{bmatrix} =$	$=\begin{bmatrix}1\\3\end{bmatrix}$	$\begin{bmatrix} 2\\4 \end{bmatrix} = M.$	•
--	--------------------------------------	-------------------------------------	--	-------------------------------------	--	---------------------------------------	--	-------------------------------------	---	---

3. List a basis for the vector space of 3×3 skew symmetric matrices. (No proof is needed.) Recall that the matrix M is skew-symmetric if $M^{\rm T} = -M$.

$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix},$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$
--	---	--

4. Let W be the set of all continuous functions f(x) with the property that $\int_{0}^{1} f(x)dx = 0$. Is W a vector space? Explain.

YES

W is closed under addition. If f and g are in W, then f + g is in W because

$$\int_{0}^{1} [f(x) + g(x)]dx = \int_{0}^{1} f(x)dx + \int_{0}^{1} g(x)dx = 0.$$

W is closed under scalar multiplication. If f is in W and r is a number, then rf is in W because

$$\int_{0}^{1} rf(x)dx = r \int_{0}^{1} f(x)dx = r \cdot 0 = 0.$$

The zero function is in W because $\int_{0}^{1} 0 dx = 0$.

5. Let W be the set of all twice differentiable functions f(x) with the property that $f''(x) + f(x) = e^x$. Is W a vector space? Explain.

NO! The set W is not closed under scalar multiplication. Indeed, $f(x) = \frac{1}{2}e^x$ is in W (because $\frac{1}{2}e^x + \frac{1}{2}e^x = e^x$). But $6f(x) = 3e^x$ is not in W because $3e^x + 3e^x = 6e^x \neq e^x$.

6. Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 3 & 4 & 5 \end{bmatrix}$.

One basis for the null space of A is

$$v_1 = \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -4\\0\\1\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix}$$

Let

$$u_1 = v_1 = \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}.$$

Let

$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} -4\\0\\1\\0\end{bmatrix} - \frac{12}{10}\begin{bmatrix} -3\\1\\0\\0\end{bmatrix} = \frac{1}{5}\left(\begin{bmatrix} -20\\0\\5\\0\end{bmatrix} - 6\begin{bmatrix} -3\\1\\0\\0\end{bmatrix}\right) = \frac{1}{5}\begin{bmatrix} -2\\-6\\5\\0\end{bmatrix}.$$

Let

$$u_2 = 5u_2' = \begin{bmatrix} -2\\ -6\\ 5\\ 0 \end{bmatrix}.$$

We check that $u_1^{\mathrm{T}}u_2 = 0$ and $Au_2 = 0$. Let

$$u_{3}' = v_{3} - \frac{u_{1}^{\mathrm{T}}v_{3}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} - \frac{u_{2}^{\mathrm{T}}v_{3}}{u_{2}^{\mathrm{T}}u_{2}}u_{2} = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} - \frac{15}{10} \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} - \frac{10}{65} \begin{bmatrix} -2\\-6\\5\\0 \end{bmatrix}$$
$$= \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} - \frac{2}{13} \begin{bmatrix} -2\\-6\\5\\0 \end{bmatrix} = \frac{1}{26} \left(\begin{bmatrix} -130\\0\\0\\26 \end{bmatrix} - 39 \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} - 4 \begin{bmatrix} -2\\-6\\5\\0 \end{bmatrix} \right)$$
$$= \frac{1}{26} \begin{bmatrix} -5\\-15\\-20\\26 \end{bmatrix}.$$

Let

$$u_3 = 26u'_3 = \begin{bmatrix} -5\\ -15\\ -20\\ 26 \end{bmatrix}.$$

Check that $Au_3 = 0$, $u_1^{\mathrm{T}}u_3 = 0$, and $u_2^{\mathrm{T}}u_3 = 0$. Our answer is