Math 544, Exam 4 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 6 problems. Problems 1 and 2 are worth 9 points each. Each of the other problems is worth 8 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Express $v=\left[\begin{array}{c}8 \\ 9 \\ 10\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. (It might be helpful to notice that v_{1}, v_{2} and v_{3} are an orthogonal set.)

Multiply each side of $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$ by v_{1}^{T} to see that $27 v=3 c_{1}$, so $c_{1}=9$. Similar calculations give $-1=2 c_{2}$; so, $c_{2}=-\frac{1}{2}$; and $-3=6 c_{3}$; so, $c_{3}=-\frac{1}{2}$. We check that

$$
9 v_{1}-\frac{1}{2} v_{2}-\frac{1}{2} v_{3}=9\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
8 \\
9 \\
10
\end{array}\right]=v
$$

2. Express $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ as a linear combination of $M_{1}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, $M_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], M_{3}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$, and $M_{4}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Observe that

$$
2 M_{1}-M_{2}+2 M_{3}+M_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 2 \\
2 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=M .
$$

3. List a basis for the vector space of 3×3 skew symmetric matrices. (No proof is needed.) Recall that the matrix M is skew-symmetric if $M^{\mathrm{T}}=-M$.

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

4. Let W be the set of all continuous functions $f(x)$ with the property that $\int_{0}^{1} f(x) d x=0$. Is W a vector space? Explain.

YES

W is closed under addition. If f and g are in W, then $f+g$ is in W because

$$
\int_{0}^{1}[f(x)+g(x)] d x=\int_{0}^{1} f(x) d x+\int_{0}^{1} g(x) d x=0 .
$$

W is closed under scalar multiplication. If f is in W and r is a number, then $r f$ is in W because

$$
\int_{0}^{1} r f(x) d x=r \int_{0}^{1} f(x) d x=r \cdot 0=0 .
$$

The zero function is in W because $\int_{0}^{1} 0 d x=0$.
5. Let W be the set of all twice differentiable functions $f(x)$ with the property that $f^{\prime \prime}(x)+f(x)=e^{x}$. Is W a vector space? Explain.
$\mathrm{NO}!$ The set W is not closed under scalar multiplication. Indeed, $f(x)=\frac{1}{2} e^{x}$ is in W (because $\frac{1}{2} e^{x}+\frac{1}{2} e^{x}=e^{x}$). But $6 f(x)=3 e^{x}$ is not in W because $3 e^{x}+3 e^{x}=6 e^{x} \neq e^{x}$.
6. Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 3 & 4 & 5\end{array}\right]$.

One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let

$$
u_{1}=v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0
\end{array}\right]-\frac{12}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left(\left[\begin{array}{c}
-20 \\
0 \\
5 \\
0
\end{array}\right]-6\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

We check that $u_{1}^{\mathrm{T}} u_{2}=0$ and $A u_{2}=0$. Let

$$
\begin{gathered}
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{15}{10}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{10}{65}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-\frac{2}{13}\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]=\frac{1}{26}\left(\left[\begin{array}{c}
-130 \\
0 \\
0 \\
26
\end{array}\right]-39\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]-4\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right]\right) \\
=\frac{1}{26}\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right] .
\end{gathered}
$$

Let

$$
u_{3}=26 u_{3}^{\prime}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right] .
$$

Check that $A u_{3}=0, u_{1}^{\mathrm{T}} u_{3}=0$, and $u_{2}^{\mathrm{T}} u_{3}=0$. Our answer is

$$
u_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-2 \\
-6 \\
5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-5 \\
-15 \\
-20 \\
26
\end{array}\right]
$$

