Math 544, Exam 3, Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 9 problems. Problem 1 is worth 10 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Let

$$
A=\left[\begin{array}{lllll}
1 & 2 & 1 & 1 & 12 \\
1 & 2 & 2 & 1 & 16 \\
1 & 2 & 2 & 2 & 21 \\
3 & 6 & 5 & 4 & 49
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Express each column of A as a linear combination of the vectors in your answer to (b).
(d) What is the dimension of the null space of A ?
(e) What is the dimension of the column space of A ?

Apply $R_{2} \mapsto R_{2}-R_{1}, R_{3} \mapsto R_{3}-R_{1}$ and $R_{4} \mapsto R_{4}-3 R_{1}$ to get

$$
\left[\begin{array}{ccccc}
1 & 2 & 1 & 1 & 12 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 1 & 1 & 9 \\
0 & 0 & 2 & 1 & 13
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-R_{2}, R_{3} \mapsto R_{3}-R_{2}$ and $R_{4} \mapsto R_{4}-2 R_{2}$ to get

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 1 & 8 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 1 & 5
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-R_{3}$ and $R_{4} \mapsto R_{4}-R_{3}$ to get

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) A basis for the null space of A is

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
0 \\
-4 \\
-5 \\
1
\end{array}\right]
$$

(b) A basis for the column space of A is

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right], \quad A_{*, 3}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
5
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
4
\end{array}\right]
$$

(c) $A_{*, 2}=2 A_{*, 1}$, and $A_{*, 5}=3 A_{*, 1}+4 A_{*, 3}+5 A_{*, 4}$. (I use $A_{*, j}$ to mean column j of A.)
(d) The null space of A has dimension 2 .
(e) The column space of A has dimension 3 .

2. Define "span". Use complete sentences.

The vectors $v_{1}, v_{2}, \ldots, v_{n}$ in the vector space V span V if every vector in V is equal to a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$.

3. Define "basis". Use complete sentences.

A basis for the vector space V is a set of vectors in V which span V and are linearly independent.
4. Let U and V be subspaces of \mathbb{R}^{n} and let

$$
W=\left\{w \in \mathbb{R}^{n} \mid w=u+v \text { for some } u \in U \text { and } v \in V\right\} .
$$

Prove that W is a subspace of \mathbb{R}^{n}.
The set W is closed under addition. Take w_{1} and w_{2} from W. Well, $w_{1}=u_{1}+v_{1}$ and $w_{2}=u_{2}+v_{2}$ for some $u_{i} \in U$ and $v_{i} \in V$. We see that

$$
w_{1}+w_{2}=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right)
$$

furthermore, $u_{1}+u_{2} \in U$ because U is a vector space and $v_{1}+v_{2}$ is in V because V is a vector space. We conclude that $w_{1}+w_{2}$ is equal to an element of U plus an element of V; and therefore, $w_{1}+w_{2}$ is in W.
The set W is closed under scalar multiplication. Take $w_{1}=u_{1}+v_{1} \in W$, as above, and $r \in \mathbb{R}$. We see that $r w_{1}=r u_{1}+r v_{1}$. The vector space U is closed under scalar multiplication; so, $r u_{1}$ is in U. Also, $r v_{1}$ is in V again because V is a vector space. Once again $r w_{1}$ has the correct form; that is $r w_{1}$ is equal to an element of U plus an element of V; therefore, $r w_{1}$ is in W.
The zero vector in \mathbb{R}^{m} is equal to the zero vector of U plus the zero vector of V; and therefore, the zero vector is in W.
5. Let V be the set of all polynomials $f(x)$, such that $f(x)$ has real number coefficients, $f(x)$ has degree at most 4 , and $f(1)=0$. Is V a vector space? Explain fairly thoroughly.
YES.
The set V is closed under addition. Take $f(x)$ and $g(x)$ in V. It is clear that $f(x)+g(x)$ is a polynomial of degree at most 4. It is also clear that if we plug 1 in for x, then the answer is $f(1)+g(1)=0+0=0$; thus, $f(x)+g(x)$ is in V.
The set V is closed under scalar multiplication. Take $f(x) \in V$ and $r \in \mathbb{R}$. It is clear that $r f(x)$ is a polynomial of degree at most 4. It is also clear that $r f(1)=r(0)=0$. Thus, $r f(x) \in V$.
The zero polynomial sends 1 to 0 , so the zero polynomial is in V.
6. Let V be the set of all 2×2 non-singular matrices. Is V a vector space? Explain fairly thoroughly.

NO. The zero matrix is not in V.
7. Let A and B be $n \times n$ matrices. Is the column space of $A B$ always contained in the column space of B ? If yes, give a proof. If no, give an example.
NO. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. We see that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. The vector $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the column space of $A B$, but v is not a multiple of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$; so, b is not in the colmun space of B.
8. Let A and B be $n \times n$ matrices. Is the null space of $A B$ always contained in the null space of B ? If yes, give a proof. If no, give an example.

NO. Let A be the zero matrix and B be the identity matrix. The product $A B$ is the zero matrix; hence, the null space of $A B$ is all of \mathbb{R}^{n}. The null space of B is $\{0\}$; and \mathbb{R}^{n} is not contained in $\{0\}$.
9. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Let V be a subspace of \mathbb{R}^{4}. Suppose that $v_{1} \in V, v_{2} \in V, v_{3} \in V$, and $v_{4} \notin V$. Do you have enough information to determine the dimension of V ? Explain thoroughly.
The vector space V has dimension 3 . We have exhibited 3 linearly independent vectors v_{1}, v_{2} and v_{3} in V. So $\operatorname{dim} V \geq 3$. On the other hand, V is a subspace of the 4 dimensional vector space \mathbb{R}^{4}; so $\operatorname{dim} V \leq 4$. Finally, if $\operatorname{dim} V$ were equal to 4 ; then V would have to equal \mathbb{R}^{4}. However, V does not equal \mathbb{R}^{4} because v_{4} is not in V.

