Math 544, Exam 2, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet; start each computational problem on a new sheet of paper; and be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2 , etc.

There are 10 problems. Each problem is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
5 \\
5 \\
10
\end{array}\right] .
$$

2. Express $a=\left[\begin{array}{l}11 \\ 16\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
3. Are the vectors $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ linearly independent or linearly dependent? Explain.
4. The vectors v_{1}, v_{2}, and v_{3} are linearly independent. Do the vectors $v_{1}-v_{2}$, $v_{2}-v_{3}$, and $v_{3}-v_{1}$ have to be linearly independent? If yes, then prove the result. If no, then give an example.
5. Let A be an $n \times n$ matrix with the property that $A x=b$ has a unique solution for every vector b in \mathbb{R}^{n}. Does $A^{\mathrm{T}} x=b$ have to have a unique solution for every vector b in \mathbb{R}^{n} ? If yes, then prove the result. If no, then give an example.
6. Define "linearly independent". Use complete sentences.
7. Define "non-singular". Use complete sentences.
8. State the result about the linear dependence of p vectors in m-space. (I call this the Short Fat Theorem).
9. Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \left\lvert\, \begin{array}{r}x_{1}+2 x_{2}+3 x_{3}=0 \\ 2 x_{1}+4 x_{2}+6 x_{3}=0 \\ x_{1}-7 x_{2}+9 x_{3}=0\end{array}\right.\right\}$. Is W a vector space? Explain.
10. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, 0 \leq x_{1} x_{2}\right\}$. Is W a vector space? Explain.
