Math 544, Exam 2 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet; start each computational problem on a **new sheet** of paper; and be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.

There are 10 problems. Each problem is worth 5 points. The exam is worth a total of 50 points. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations Ax = b. Also, list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 5 \\ 10 \end{bmatrix}.$$

Apply the row operations $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - 2R_1$ to the matrix

$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$	$2 \\ 2 \\ 4$	$-1 \\ -1 \\ -2$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$10 \\ 16 \\ 26$		$\begin{bmatrix} 5\\5\\10 \end{bmatrix}$
[1	2	-1	1	10	ĺ	5]

to obtain

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 10 & | & 5 \\ 0 & 0 & 0 & 1 & 6 & | & 0 \\ 0 & 0 & 0 & 1 & 6 & | & 0 \end{bmatrix}.$$

Apply $R_3 \mapsto R_3 - R_2$ and $R_1 \mapsto R_1 - R_2$ to get

$$egin{bmatrix} 1 & 2 & -1 & 0 & 4 & | & 5 \ 0 & 0 & 0 & 1 & 6 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The general solution of the system of equations is

($\lceil x_1 \rceil$		ך5ק		$\lceil -2 \rceil$		۲1٦		$\lceil -4 \rceil$		
	x_2		0		1		0		0		
{	x_3	=	0	$+x_{2}$	0	$+x_{3}$	1	$+x_{5}$	0	$\left x_2, x_3, x_5 \in \mathbb{R} \right\rangle$	
	x_4		0		0		0		-6		
l	$\lfloor x_5 \rfloor$								1]]	

Some specific solutions of this system of equations are

$$v_1 = \begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3\\1\\0\\0\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 6\\0\\1\\0\\0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 1\\0\\0\\-6\\1 \end{bmatrix}.$$

(In v_1 , I took $x_2 = x_3 = x_5 = 0$. In v_2 , I took $x_2 = 1$, $x_3 = 0$, and $x_5 = 0$. In v_3 , I took $x_2 = 0$, $x_3 = 1$, and $x_5 = 0$. In v_4 , I took $x_2 = 0$, $x_3 = 0$, and $x_5 = 1$.) We check

$$Av_{1} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 \\ 5 \cdot 2 \\ 1 \\ 5 \cdot 2 \end{bmatrix} = b.\checkmark$$
$$Av_{2} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \cdot 1 + 2 \cdot 1 \\ 3 \cdot 1 + 2 \cdot 1 \\ 3 \cdot 2 + 1 \cdot 4 \end{bmatrix} = b.\checkmark$$
$$Av_{3} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \cdot 1 + 1 \cdot (-1) \\ 6 \cdot 1 + 1 \cdot (-1) \\ 6 \cdot 2 + 1 \cdot (-2) \end{bmatrix} = b.\checkmark$$
$$Av_{4} = \begin{bmatrix} 1 & 2 & -1 & 1 & 10 \\ 1 & 2 & -1 & 2 & 16 \\ 2 & 4 & -2 & 3 & 26 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ -6 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 - 6 \cdot 1 + 1 \cdot 10 \\ 1 \cdot 1 - 6 \cdot 2 + 1 \cdot 16 \\ 1 \cdot 2 - 6 \cdot 3 + 1 \cdot 26 \end{bmatrix} = b.\checkmark$$

2. Express
$$a = \begin{bmatrix} 11\\ 16 \end{bmatrix}$$
 as a linear combination of $v_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 3\\ 4 \end{bmatrix}$.

We want to find c_1 and c_2 with

(1)
$$c_1v_1 + c_2v_2 = a.$$

This amounts to solving a system of equations. Apply $R_2 \mapsto R_2 - 2R_1$ to the matrix

to obtain
$$\begin{bmatrix}
1 & 3 & | & 11 \\
2 & 4 & | & 16
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & | & 11 \\
0 & -2 & | & -6
\end{bmatrix}.$$

Divide row 2 by -2 to obtain

$$\begin{bmatrix} 1 & 3 & | & 11 \\ 0 & 1 & | & 3 \end{bmatrix}$$

Apply $R_1 \mapsto R_1 - 3R_2$ to obtain

 $\begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \end{bmatrix}$

Thus, the solution of (1) is $c_1 = 2$ and $c_2 = 3$. Observe that

$$2v_1 + 3v_2 = 2\begin{bmatrix}1\\2\end{bmatrix} + 3\begin{bmatrix}3\\4\end{bmatrix} = \begin{bmatrix}2+9\\4+12\end{bmatrix} = a,$$

as expected; so the answer is $a = 2v_1 + 3v_2$.

3. Are the vectors
$$v_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix}$ linearly

independent or linearly dependent? Explain.

We solve the system of equations

(2)
$$c_1v_1 + c_2v_2 + c_3v_3 = 0.$$

Apply $R_2 \mapsto R_2 - 2R_1$ and $R_3 \mapsto R_3 - 3R_1$ to

[1	4	7]
2	5	8
3	6	9

to obtain

$$\begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$$

Divide row 2 by -3 to see that

$$\begin{bmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{bmatrix}.$$

Apply $R_3 \mapsto R_3 + 6R2$ and $R_1 \mapsto R_1 - 4R2$ to obtain

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The general solution of (2) is $c_1 = c_3$, $c_2 = -2c_3$ and c_3 is a free variable. In particular, if we take $c_3 = 1$, then we have $c_1 = 1$, $c_2 = -2$, and $c_3 = 1$. It is indeed true that $1v_1 - 2v_2 + 1v_3 = 0$ because 1 - 8 + 7 = 0, 2 - 10 + 8 = 0 and 3 - 12 + 9 = 0.

The vectors v_1, v_2, v_3 are linearly DEPENDENT.

4. The vectors v_1 , v_2 , and v_3 are linearly independent. Do the vectors $v_1 - v_2$, $v_2 - v_3$, and $v_3 - v_1$ have to be linearly independent? If yes, then prove the result. If no, then give an example.

NO. In fact, the vectors $v_1 - v_2$, $v_2 - v_3$, and $v_3 - v_1$ are ALWAYS linearly DEPENDENT because

$$1(v_1 - v_2) + 1(v_2 - v_3) + 1(v_3 - v_1) = 0$$

for EVERY choice of v_1 , v_2 , and v_3 . If you want a concrete example, the vectors

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

are linearly independent; but the vectors

$$w_1 = v_1 - v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad w_2 = v_2 - v_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad w_3 = v_3 - v_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

are linearly dependent since

$$1w_1 + 1w_2 + 1w_3 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix} + \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}.$$

It is most likely that the answer to this problem did not just jump into your head. You probably set out to decide if $v_1 - v_2$, $v_2 - v_3$, and $v_3 - v_1$ are linearly independent. So you set out to solve

(3)
$$c_1(v_1 - v_2) + c_2(v_2 - v_3) + c_3(v_3 - v_1) = 0.$$

Equation (3) is equivalent to

(4)
$$(c_1 - c_3)v_1 + (c_2 - c_1)v_2 + (c_3 - c_2)v_3 = 0.$$

The vectors v_1 , v_2 , and v_3 are linearly independent; consequently the coefficients which appear in (4) MUST be zero; that is,

(5)
$$\begin{cases} c_1 - c_3 = 0\\ c_2 - c_1 = 0\\ c_3 - c_2 = 0 \end{cases}$$

We know how to solve (5). Apply $R_2 \mapsto R_2 + R_1$ to

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

to obtain

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

Apply $R_3 \mapsto R_3 + R_2$ to obtain

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution to (5) is $c_1 = c_3$, $c_2 = c_3$ and c_3 is a free variable. If we take $c_3 = 1$, then $c_1 = c_2 = c_3 = 1$ is a solution of (5). Hence $c_1 = c_2 = c_3 = 1$ is a solution of (3), and that is where my answer began.

5. Let A be an $n \times n$ matrix with the property that Ax = b has a unique solution for every vector b in \mathbb{R}^n . Does $A^T x = b$ have to have a unique solution for every vector b in \mathbb{R}^n ? If yes, then prove the result. If no, then give an example.

YES The hypothesis tells us that every condition of the non-singular matrix theorem holds for the matrix A. In particular, the matrix A has an inverse. It follows that the matrix $A^{\rm T}$ has an inverse. (Indeed, the inverse of $A^{\rm T}$ is merely the transpose of A^{-1} , as we saw in class.) Every condition in the non-singular matrix theorem holds for the matrix A^{T} . In particular, the system of equations $A^{\mathrm{T}}x = b$ has a unique solution for every vector b in \mathbb{R}^n .

6. Define "linearly independent". Use complete sentences.

The vectors v_1, \ldots, v_p in \mathbb{R}^m are *linearly independent* if the ONLY numbers c_1, \ldots, c_p , with $c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0$ are $c_1 = c_2 = \cdots = c_p = 0$.

7. Define "non-singular". Use complete sentences.

The square matrix A is non-singular if the only column vector x with Ax = 0 is x = 0.

8. State the result about the linear dependence of p vectors in m-space. (I call this the Short Fat Theorem).

If p > m, then any list of p vectors from \mathbb{R}^m is linearly DEPENDENT.

9. Let
$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 4x_2 + 6x_3 = 0 \\ x_1 - 7x_2 + 9x_3 = 0 \end{array} \right\}$$
. Is W a vector space? Explain.

YES. The set W is the null space of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & -7 & 9 \end{bmatrix}$. We proved

in class that the null space of any matrix is a vector space.

10. Let $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \middle| 0 \le x_1 x_2 \right\}$. Is W a vector space? Explain. NO. The set W is not closed under addition because $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$ are in W, but the sum $v_1 + v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is not in W.