Math 544, Exam 2 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet; start each computational problem on a new sheet of paper; and be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2 , etc.

There are 10 problems. Each problem is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
5 \\
5 \\
10
\end{array}\right] .
$$

Apply the row operations $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to the matrix

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 1 & 10 & 5 \\
1 & 2 & -1 & 2 & 16 & 5 \\
2 & 4 & -2 & 3 & 26 & 10
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 1 & 10 & 5 \\
0 & 0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 1 & 6 & 0
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{2}$ and $R_{1} \mapsto R_{1}-R_{2}$ to get

$$
\left[\begin{array}{ccccc|c}
1 & 2 & -1 & 0 & 4 & 5 \\
0 & 0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution of the system of equations is

$$
\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-4 \\
0 \\
0 \\
-6 \\
1
\end{array}\right] \right\rvert\, x_{2}, x_{3}, x_{5} \in \mathbb{R}\right\} .
$$

Some specific solutions of this system of equations are

$$
v_{1}=\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
6 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-6 \\
1
\end{array}\right] .
$$

(In v_{1}, I took $x_{2}=x_{3}=x_{5}=0$. In v_{2}, I took $x_{2}=1, x_{3}=0$, and $x_{5}=0$. In v_{3}, I took $x_{2}=0, x_{3}=1$, and $x_{5}=0$. In v_{4}, I took $x_{2}=0, x_{3}=0$, and $x_{5}=1$.) We check

$$
\begin{aligned}
& A v_{1}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
5 \cdot 1 \\
5 \cdot 1 \\
5 \cdot 2
\end{array}\right]=b . \checkmark \\
& A v_{2}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
3 \cdot 1+2 \cdot 1 \\
3 \cdot 1+2 \cdot 1 \\
3 \cdot 2+1 \cdot 4
\end{array}\right]=b . \checkmark \\
& A v_{3}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
6 \cdot 1+1 \cdot(-1) \\
6 \cdot 1+1 \cdot(-1) \\
6 \cdot 2+1 \cdot(-2)
\end{array}\right]=b . \checkmark \\
& A v_{4}=\left[\begin{array}{lllll}
1 & 2 & -1 & 1 & 10 \\
1 & 2 & -1 & 2 & 16 \\
2 & 4 & -2 & 3 & 26
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
-6 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 1-6 \cdot 1+1 \cdot 10 \\
1 \cdot 1-6 \cdot 2+1 \cdot 16 \\
1 \cdot 2-6 \cdot 3+1 \cdot 26
\end{array}\right]=b . \checkmark
\end{aligned}
$$

2. Express $a=\left[\begin{array}{l}11 \\ 16\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.

We want to find c_{1} and c_{2} with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=a . \tag{1}
\end{equation*}
$$

This amounts to solving a system of equations. Apply $R_{2} \mapsto R_{2}-2 R_{1}$ to the matrix

$$
\left[\begin{array}{ll|l}
1 & 3 & 11 \\
2 & 4 & 16
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{cc|c}
1 & 3 & 11 \\
0 & -2 & -6
\end{array}\right]
$$

Divide row 2 by -2 to obtain

$$
\left[\begin{array}{ll|c}
1 & 3 & 11 \\
0 & 1 & 3
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-3 R_{2}$ to obtain

$$
\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right]
$$

Thus, the solution of (1) is $c_{1}=2$ and $c_{2}=3$. Observe that

$$
2 v_{1}+3 v_{2}=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
2+9 \\
4+12
\end{array}\right]=a
$$

as expected; so the answer is $a=2 v_{1}+3 v_{2}$.
3. Are the vectors $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ linearly independent or linearly dependent? Explain.
We solve the system of equations

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{2}
\end{equation*}
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}$ and $R_{3} \mapsto R_{3}-3 R_{1}$ to

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right]
$$

Divide row 2 by -3 to see that

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right]
$$

Apply $R_{3} \mapsto R_{3}+6 R 2$ and $R_{1} \mapsto R_{1}-4 R 2$ to obtain

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

The general solution of (2) is $c_{1}=c_{3}, c_{2}=-2 c_{3}$ and c_{3} is a free variable. In particular, if we take $c_{3}=1$, then we have $c_{1}=1, c_{2}=-2$, and $c_{3}=1$. It is indeed true that $1 v_{1}-2 v_{2}+1 v_{3}=0$ because $1-8+7=0,2-10+8=0$ and $3-12+9=0$.

The vectors v_{1}, v_{2}, v_{3} are linearly DEPENDENT.
4. The vectors v_{1}, v_{2}, and v_{3} are linearly independent. Do the vectors $v_{1}-v_{2}, v_{2}-v_{3}$, and $v_{3}-v_{1}$ have to be linearly independent? If yes, then prove the result. If no, then give an example.

NO. In fact, the vectors $v_{1}-v_{2}, v_{2}-v_{3}$, and $v_{3}-v_{1}$ are ALWAYS linearly DEPENDENT because

$$
1\left(v_{1}-v_{2}\right)+1\left(v_{2}-v_{3}\right)+1\left(v_{3}-v_{1}\right)=0
$$

for EVERY choice of v_{1}, v_{2}, and v_{3}. If you want a concrete example, the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

are linearly independent; but the vectors

$$
w_{1}=v_{1}-v_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad w_{2}=v_{2}-v_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad w_{3}=v_{3}-v_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

are linearly dependent since

$$
1 w_{1}+1 w_{2}+1 w_{3}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

It is most likely that the answer to this problem did not just jump into your head. You probably set out to decide if $v_{1}-v_{2}, v_{2}-v_{3}$, and $v_{3}-v_{1}$ are linearly independent. So you set out to solve

$$
\begin{equation*}
c_{1}\left(v_{1}-v_{2}\right)+c_{2}\left(v_{2}-v_{3}\right)+c_{3}\left(v_{3}-v_{1}\right)=0 . \tag{3}
\end{equation*}
$$

Equation (3) is equivalent to

$$
\begin{equation*}
\left(c_{1}-c_{3}\right) v_{1}+\left(c_{2}-c_{1}\right) v_{2}+\left(c_{3}-c_{2}\right) v_{3}=0 \tag{4}
\end{equation*}
$$

The vectors v_{1}, v_{2}, and v_{3} are linearly independent; consequently the coefficients which appear in (4) MUST be zero; that is,

$$
\left\{\begin{array}{l}
c_{1}-c_{3}=0 \tag{5}\\
c_{2}-c_{1}=0 \\
c_{3}-c_{2}=0
\end{array}\right.
$$

We know how to solve (5). Apply $R_{2} \mapsto R_{2}+R_{1}$ to

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Apply $R_{3} \mapsto R_{3}+R_{2}$ to obtain

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

The solution to (5) is $c_{1}=c_{3}, c_{2}=c_{3}$ and c_{3} is a free variable. If we take $c_{3}=1$, then $c_{1}=c_{2}=c_{3}=1$ is a solution of (5). Hence $c_{1}=c_{2}=c_{3}=1$ is a solution of (3), and that is where my answer began.
5. Let A be an $n \times n$ matrix with the property that $A x=b$ has a unique solution for every vector b in \mathbb{R}^{n}. Does $A^{\mathrm{T}} x=b$ have to have a unique solution for every vector b in \mathbb{R}^{n} ? If yes, then prove the result. If no, then give an example.

YES The hypothesis tells us that every condition of the non-singular matrix theorem holds for the matrix A. In particular, the matrix A has an inverse. It follows that the matrix A^{T} has an inverse. (Indeed, the inverse of A^{T} is merely the transpose of A^{-1}, as we saw in class.) Every condition in the non-singular matrix theorem holds for the matrix A^{T}. In particular, the system of equations $A^{\mathrm{T}} x=b$ has a unique solution for every vector b in \mathbb{R}^{n}.
6. Define "linearly independent". Use complete sentences.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{m} are linearly independent if the ONLY numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.

7. Define "non-singular". Use complete sentences.

The square matrix A is non-singular if the only column vector x with $A x=0$ is $x=0$.
8. State the result about the linear dependence of p vectors in m-space. (I call this the Short Fat Theorem).

If $p>m$, then any list of p vectors from \mathbb{R}^{m} is linearly DEPENDENT.
9. Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \left\lvert\, \begin{array}{r}x_{1}+2 x_{2}+3 x_{3}=0 \\ 2 x_{1}+4 x_{2}+6 x_{3}=0 \\ x_{1}-7 x_{2}+9 x_{3}=0\end{array}\right.\right\}$. Is W a vector space? Explain.
YES. The set W is the null space of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & -7 & 9\end{array}\right]$. We proved in class that the null space of any matrix is a vector space.
10. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, 0 \leq x_{1} x_{2}\right\}$. Is W a vector space? Explain.

NO. The set W is not closed under addition because $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
are in W, but the sum $v_{1}+v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is not in W.

