Exam 4,Summer 2003,Math 544SolutionsPRINT Your Name:

Please also write your name on the back of the exam.

There are 9 problems on 5 pages. Problem 2 is worth 10 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. \boxed{CIRCLE} your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door later today (surely by 5:00 PM), you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define "basis". Use complete sentences.

The vectors v_1, \ldots, v_n are a <u>basis</u> for the vector space V if v_1, \ldots, v_n are linearly independent and span V.

2. State any TWO of the four theorems about dimension. Use complete sentences.

<u>Theorem 1.</u> If V is a subsapce of \mathbb{R}^n , then every basis for V has the same number of vectors.

<u>Theorem 2.</u> If V is a subsapce of \mathbb{R}^n , then every linearly independent subset in V is part of a basis for V.

<u>Theorem 3.</u> If V is a subsapce of \mathbb{R}^n , then every finite spanning set for V contains a basis for V.

<u>Theorem 4.</u> If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.

3. Yes or No. Let v_1 , v_2 , v_3 be linearly independent vectors in \mathbb{R}^n and let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Is it always true that $T(v_1)$, $T(v_2)$, $T(v_3)$ are linearly independent vectors? If yes, prove it. If no, give an example.

 $\begin{array}{|c|c|c|c|c|}\hline \mathrm{NO!} & \mathrm{Let} \ T \colon \mathbb{R}^3 \to \mathbb{R}^3 \ \text{be the function which sends every vector} \\ \mathrm{to} \ \mathrm{zero.} & \mathrm{It} \ \mathrm{is \ clear \ that} \ T \ \mathrm{is \ a \ linear \ transformation \ but} \ T \\ \mathrm{carries \ the \ linearly \ independent \ vectors} \ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix}$

4. Yes or No. Let v_1 , v_2 , v_3 be vectors in \mathbb{R}^n and let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Suppose that $T(v_1)$, $T(v_2)$, $T(v_3)$ are linearly independent vectors in \mathbb{R}^m . Do the vectors v_1 , v_2 , v_3 have to be linearly independent? If yes, prove it. If no, give an example.

[YES!] Suppose $c_1v_1 + c_2v_2 + c_3v_3 = 0$. Apply the linear transformation T and use the fact that T is a linear transformation to see that $c_1T(v_1) + c_2T(v_2) + c_3T(v_3) = 0$. The vectors $T(v_1)$, $T(v_2)$, $T(v_3)$ are linearly independent; hence, $c_1 = c_2 = c_3 = 0$ and v_1 , v_2 , v_3 are linearly independent.

5. Yes or No. Let A be a 3×4 matrix. Suppose that the column space of A has dimension 2. Does the system of equations Ax = b have at least one solution for every vector b in \mathbb{R}^3 ? Explain.

NO! The hypothesis says that the vector space of vectors in \mathbb{R}^3 which have the form Ax for some x in \mathbb{R}^4 is a two dimension object in \mathbb{R}^3 . MOST of the vectors b in \mathbb{R}^3 are NOT in the column space of A. If you choose such a b, then Ax = b does not have a solution.

6. Yes or No. Let A and B be 2×2 matrices. Does

the null space of $A \subseteq$ the null space of AB

always happen? If yes, prove it. If no, give an example. $\boxed{\text{NO!}} \text{ Let } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \text{ We see that } v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is in the null space of A (because Av = 0), but v is not in the nullspace of AB (because $ABv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$).

7. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$. Find a matrix B with BA equal to

the identity matrix. You may do the problem any way you like, but you might want to notice that the columns of A are an orthogonal set.

Notice that $A^{\mathrm{T}}A = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix}$. Multiply both sides by $\begin{bmatrix} 1/4 & 0 \\ 0 & 1/6 \end{bmatrix}$ to see that if $B = \begin{bmatrix} 1/4 & 0 \\ 0 & 1/6 \end{bmatrix} A^{\mathrm{T}}$, then BA = I. So we take

$B = \begin{bmatrix} 1/4 & 1/4 \\ 2/6 & -1/6 \end{bmatrix}$	$\frac{1/4}{-1/6}$	$\begin{bmatrix} 1/4 \\ 0 \end{bmatrix}$	•
---	--------------------	--	---

8. Find the eigenvalues and the eigenvectors of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$.

We compute

$$0 = \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 3\\ 2 & 2 - \lambda \end{bmatrix} = (1 - \lambda)(2 - \lambda) - 6$$
$$= \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4).$$

The eigenvalues of A are $\lambda = -1, 4$. The eigenvectors associated to $\lambda = -1$ are in the null space of $A + I = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$. Elementary row operations give $\begin{bmatrix} 1 & 3/2 \\ 0 & 0 \end{bmatrix}$. The eigenvectors of A which belong to $\lambda = -1$ are the multiples of $v = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$. Check that Av = -v. The eigenvectors associated to $\lambda = 4$ are in the null space of $A - 4I = \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix}$. Elementary row operations give $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$. The eigenvectors of A which belong to $\lambda = 4$ are the multiples of $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Check that Aw = 4w.

9. Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$.

One basis for the null space of A is

$$v_1 = \begin{bmatrix} -2\\ -2\\ 1\\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} -3\\ -4\\ 0\\ 1 \end{bmatrix}$$

We apply Gram-Schmidt orthogonalization. Take $u_1 = v_1$. Take

$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} -3\\ -4\\ 0\\ 1 \end{bmatrix} - \frac{14}{9} \begin{bmatrix} -2\\ -2\\ 1\\ 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1\\ -8\\ -14\\ 9 \end{bmatrix}$$

Take $u_2 = 9u'_2$. The vectors

$$u_1 = \begin{bmatrix} -2\\ -2\\ 1\\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1\\ -8\\ -14\\ 9 \end{bmatrix}$$

are an orthogonal basis for the null space of A. Check that $Au_1 = 0$, $Au_2 = 0$, and $u_1^{\mathrm{T}}u_2 = 0$.