Exam 4, Summer 2003, Math 544 Solutions

PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 9 problems on 5 pages. Problem 2 is worth 10 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door later today (surely by 5:00 PM), you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define "basis". Use complete sentences.

The vectors v_{1}, \ldots, v_{n} are a basis for the vector space V if v_{1}, \ldots, v_{n} are linearly independent and span V.
2. State any TWO of the four theorems about dimension. Use complete sentences.
Theorem 1. If V is a subsapce of \mathbb{R}^{n}, then every basis for V has the same number of vectors.

Theorem 2. If V is a subsapce of \mathbb{R}^{n}, then every linearly independent subset in V is part of a basis for V.

Theorem 3. If V is a subsapce of \mathbb{R}^{n}, then every finite spanning set for V contains a basis for V.

Theorem 4. If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.
3. Yes or No. Let v_{1}, v_{2}, v_{3} be linearly independent vectors in \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Is it always true that $T\left(v_{1}\right), T\left(v_{2}\right)$, $T\left(v_{3}\right)$ are linearly independent vectors? If yes, prove it. If no, give an example.
NO! Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function which sends every vector to zero. It is clear that T is a linear transformation but T carries the linearly independent vectors the linearly dependent vectors $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
4. Yes or No. Let v_{1}, v_{2}, v_{3} be vectors in \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Suppose that $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in \mathbb{R}^{m}. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove it. If no, give an example.
YES! Suppose $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. Apply the linear transformation T and use the fact that T is a linear transformation to see that $c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)=0$. The vectors $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent; hence, $c_{1}=c_{2}=c_{3}=0$ and v_{1}, v_{2}, v_{3} are linearly independent.
5. Yes or No. Let A be a 3×4 matrix. Suppose that the column space of A has dimension 2. Does the system of equations $A x=b$ have at least one solution for every vector b in \mathbb{R}^{3} ? Explain.
NO! The hypothesis says that the vector space of vectors in \mathbb{R}^{3} which have the form $A x$ for some x in \mathbb{R}^{4} is a two dimension object in \mathbb{R}^{3}. MOST of the vectors b in \mathbb{R}^{3} are NOT in the column space of A. If you choose such a b, then $A x=b$ does not have a solution.
6. Yes or No. Let A and B be 2×2 matrices. Does
the null space of $A \subseteq$ the null space of $A B$
always happen? If yes, prove it. If no, give an example. NO! Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. We see that $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the null space of A (because $A v=0$), but v is not in the nullspace of $A B$ (because $A B v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$).
7. Let $A=\left[\begin{array}{cc}1 & 2 \\ 1 & -1 \\ 1 & -1 \\ 1 & 0\end{array}\right]$. Find a matrix B with $B A$ equal to the identity matrix. You may do the problem any way you like, but you might want to notice that the columns of A are an orthogonal set.
Notice that $A^{\mathrm{T}} A=\left[\begin{array}{ll}4 & 0 \\ 0 & 6\end{array}\right]$. Multiply both sides by $\left[\begin{array}{cc}1 / 4 & 0 \\ 0 & 1 / 6\end{array}\right]$ to see that if $B=\left[\begin{array}{cc}1 / 4 & 0 \\ 0 & 1 / 6\end{array}\right] A^{\mathrm{T}}$, then $B A=I$. So we take

$$
B=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
2 / 6 & -1 / 6 & -1 / 6 & 0
\end{array}\right] .
$$

8. Find the eigenvalues and the eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]
$$

We compute

$$
\begin{gathered}
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 3 \\
2 & 2-\lambda
\end{array}\right]=(1-\lambda)(2-\lambda)-6 \\
=\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4)
\end{gathered}
$$

The eigenvalues of A are $\lambda=-1,4$. The eigenvectors associated to $\lambda=-1$ are in the null space of $A+I=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$. Elementary row operations give $\left[\begin{array}{cc}1 & 3 / 2 \\ 0 & 0\end{array}\right]$. The eigenvectors of A which belong to $\lambda=-1$ are the multiples of $v=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. Check that $A v=-v$. The eigenvectors associated to $\lambda=4$ are in the null space of $A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 2 & -2\end{array}\right]$. Elementary row operations give $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$. The eigenvectors of A which belong to $\lambda=4$ are the multiples of $w=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Check that $A w=4 w$.
9. Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 0 & 2 & 3 \\ 0 & 1 & 2 & 4\end{array}\right]$.
One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
-3 \\
-4 \\
0 \\
1
\end{array}\right]
$$

We apply Gram-Schmidt orthogonalization. Take $u_{1}=v_{1}$. Take

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-3 \\
-4 \\
0 \\
1
\end{array}\right]-\frac{14}{9}\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
1 \\
-8 \\
-14 \\
9
\end{array}\right]
$$

Take $u_{2}=9 u_{2}^{\prime}$. The vectors

$$
u_{1}=\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
1 \\
-8 \\
-14 \\
9
\end{array}\right]
$$

are an orthogonal basis for the null space of A. Check that $A u_{1}=0, A u_{2}=0$, and $u_{1}^{\mathrm{T}} u_{2}=0$.

