Exam 3, Summer 2003, Math 544, Solutions PRINT Your Name:

Please also write your name on the back of the exam.

There are 9 problems on 5 pages. Problem 4 is worth 10 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. \boxed{CIRCLE} your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door later today (surely by 5:00 PM), you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define "linearly independent". Use complete sentences.

The vectors v_1, \ldots, v_p in \mathbb{R}^n are *linearly independent* if the only numbers c_1, \ldots, c_p with $\sum_{i=1}^p c_i v_i = 0$ are $c_1 = 0, c_2 = 0, \ldots, c_p = 0$.

2. Define "null space". Use complete sentences.

The *null space* of the matrix A is the set of all column vectors x with Ax = 0.

3. Define "span". Use complete sentences.

The vectors v_1, \ldots, v_p span the vector space V is every vector in V is equal to a linear combination of the vectors v_1, \ldots, v_p .

4. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 3 & 6 & 7 \\ 1 & 2 & 3 & 3 & 6 & 8 \\ 2 & 4 & 6 & 6 & 12 & 15 \\ 1 & 2 & 3 & 4 & 11 & 1 \end{bmatrix}$$
. Find a basis for the

null space of A. Find a basis for the column space of

A. Find a basis for the row space of A. Express each column of A as a linear combination of the basis you have chosen for the column space of A. Express each row of A as a linear combination of the basis you have chosen for the row space of A.

Apply $R_2 \mapsto R_2 - R_1$, $R_3 \mapsto R_3 - 2R_1$, and $R_4 \mapsto R_4 - R_1$ to get:

-1	2	3	3	6	7]
0	0	0	0	0	1
0	0	0	0	0	1
_0	0	0	1	5	-6

Exchange rows 2 and 4 to get:

-1	2	3	3	6	ך 7
0	0	0	1	5	-6
0	0	0	0	0	1
0	0	0	0	0	1

Apply $R_1 \mapsto R_1 - 7R_3$, $R_2 \mapsto R_2 + 6R_3$, and $R_4 \mapsto R_4 - R_3$ to get:

Γ1	2	3	3	6	ך 0
0	0	0	1	5	0
0	0	0	0	0	1
$\lfloor 0 \rfloor$	0	0	0	0	0

Apply $R_1 \mapsto R_1 - 3R_2$ to get:

2	3	0	-9	ך 0	
0	0	1	5	0	
0	0	0	0	1	•
0	0	0	0	0	
	$2 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{ccc} 2 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 2 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 2 & 3 & 0 & -9 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

The null space of A is the set of all vectors

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \quad \text{with} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 9 \\ 0 \\ 0 \\ -5 \\ 1 \\ 0 \end{bmatrix},$$

where the "free variables" x_2 , x_3 , and x_5 are free to taken on any values. It is now obvious that

[-2]		$\lceil -3 \rceil$		[9]
1		0		0
0		1		0
0	,	0	,	-5
0		0		1

is a basis for the null space of A. (These vectors are in the null space of A. Be sure to check this. Every vector in the null space of A can be written in terms of these vectors. A quick glance shows that these vectors are linearly independent.)

Columns 1, 4, and 6 of the original matrix A are a basis for the column space of A. That is

$\begin{bmatrix} 1\\ 1 \end{bmatrix}$		$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$		$\begin{bmatrix} 7\\ 0 \end{bmatrix}$	
	,	3	,		
2	,	0	,	15	
		L4J			

are a basis for the column space of $A\,.\,$ Look at the basis of the null space to see that

$$A_{*,2} = 2A_{*,1}, \quad A_{*,3} = 3A_{*,1}, \quad A_{*,5} = -9A_{*,1} + 5A_{*,4}.$$

Be sure to check that these equations hold.

The vectors

 $\begin{bmatrix} 1 & 2 & 3 & 0 & -9 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

are a basis for the row space of A. Notice that

$$\begin{split} A_{1,*} &= 1 \begin{bmatrix} 1 & 2 & 3 & 0 & -9 & 0 \end{bmatrix} + 3 \begin{bmatrix} 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix} + 7 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \\ A_{2,*} &= 1 \begin{bmatrix} 1 & 2 & 3 & 0 & -9 & 0 \end{bmatrix} + 3 \begin{bmatrix} 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix} + 8 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \end{split}$$

$$A_{3,*} = 2 \begin{bmatrix} 1 & 2 & 3 & 0 & -9 & 0 \end{bmatrix} + 6 \begin{bmatrix} 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix} + 15 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

and

 $A_{4,*} = 1 \begin{bmatrix} 1 & 2 & 3 & 0 & -9 & 0 \end{bmatrix} + 4 \begin{bmatrix} 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$

Do be sure to check this arithmetic. I use $A_{i,*}$ to mean row *i* of A and $A_{*,j}$ to mean column *j* of A.

5. Let A and B be 2×2 matrices. Does

the column space of $AB \subseteq$ the column space of A

always happen? If yes, prove it. If no, give an example. yes Take x in the column space of AB. So x = ABy for some vector $y \in \mathbb{R}^2$. It follows that x = A(By) and By is a vector in \mathbb{R}^2 so x is also in the column space of A.

6. Let A and B be 2×2 matrices. Does

the null space of $AB \subseteq$ the null space of A

always happen? If yes, prove it. If no, give an example. no. Let A be the identity matrix and B be the zero matrix. In this case AB is the zero matrix. We see that $\begin{bmatrix} 1\\0 \end{bmatrix}$ is in the null space of $AB = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$, but $\begin{bmatrix} 1\\0 \end{bmatrix}$ is not in the null space of $A = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$.

7. True or False. Let $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| \begin{array}{c} x_2 x_3 = 0 \end{array} \right\}$. Is W a

vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.

no. We see that
$$v = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 and $v' = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ are both in W , but $v + v' = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ is not in W .

8. True or False. Let $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| x_1 + x_2 = x_3 \right\}$. Is W a

vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.

yes. We see that W is the null space of the matrix $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$ and we know that the null space of any matrix is a vector space.

9. Let A be a 2×3 matrix. Suppose that the column space of A has dimension 2. Is the system of equations Ax = b consistent for every choice of the vector b in \mathbb{R}^2 ? Explain.

yes. The column space of A is a two dimensional subspace of \mathbb{R}^2 , which has dimension 2. It follows that the column space of A is equal to \mathbb{R}^2 . In other words, if b is a vector in \mathbb{R}^2 , then there exists a vector x in \mathbb{R}^3 , with Ax = b. That, is Ax = b has a solution for every choice of b.