Exam 3, Summer 2003, Math 544, Solutions PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 9 problems on 5 pages. Problem 4 is worth 10 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door later today (surely by 5:00 PM), you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define "linearly independent". Use complete sentences. The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=0, c_{2}=0, \ldots$, $c_{p}=0$.
2. Define "null space". Use complete sentences. The null space of the matrix A is the set of all column vectors x with $A x=0$.
3. Define "span". Use complete sentences.

The vectors v_{1}, \ldots, v_{p} span the vector space V is every vector in V is equal to a linear combination of the vectors v_{1}, \ldots, v_{p}.
4. Let $A=\left[\begin{array}{cccccc}1 & 2 & 3 & 3 & 6 & 7 \\ 1 & 2 & 3 & 3 & 6 & 8 \\ 2 & 4 & 6 & 6 & 12 & 15 \\ 1 & 2 & 3 & 4 & 11 & 1\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of
A. Find a basis for the row space of A. Express each column of A as a linear combination of the basis you have chosen for the column space of A. Express each row of A as a linear combination of the basis you have chosen for the row space of A.
Apply $R_{2} \mapsto R_{2}-R_{1}, R_{3} \mapsto R_{3}-2 R_{1}$, and $R_{4} \mapsto R_{4}-R_{1}$ to get:

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 3 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 5 & -6
\end{array}\right] .
$$

Exchange rows 2 and 4 to get:

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 3 & 6 & 7 \\
0 & 0 & 0 & 1 & 5 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-7 R_{3}, R_{2} \mapsto R_{2}+6 R_{3}$, and $R_{4} \mapsto R_{4}-R_{3}$ to get:

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 3 & 6 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-3 R_{2}$ to get:

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 0 & -9 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The null space of A is the set of all vectors

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right] \quad \text { with }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
9 \\
0 \\
0 \\
-5 \\
1 \\
0
\end{array}\right],
$$

where the "free variables" x_{2}, x_{3}, and x_{5} are free to taken on any values. It is now obvious that

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
9 \\
0 \\
0 \\
-5 \\
1 \\
0
\end{array}\right]
$$

is a basis for the null space of A. (These vectors are in the null space of A. Be sure to check this. Every vector in the null space of A can be written in terms of these vectors. A quick glance shows that these vectors are linearly independent.)

Columns 1, 4, and 6 of the original matrix A are a basis for the column space of A. That is

$$
\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
3 \\
6 \\
4
\end{array}\right], \quad\left[\begin{array}{c}
7 \\
8 \\
15 \\
1
\end{array}\right]
$$

are a basis for the column space of A. Look at the basis of the null space to see that

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 5}=-9 A_{*, 1}+5 A_{*, 4}
$$

Be sure to check that these equations hold.
The vectors

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & -9 & 0
\end{array}\right], \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 5 & 0
\end{array}\right], \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

are a basis for the row space of A. Notice that

$$
\begin{aligned}
& A_{1, *}=1\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & -9 & 0
\end{array}\right]+3\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 5 & 0
\end{array}\right]+7\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& A_{2, *}=1\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & -9 & 0
\end{array}\right]+3\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 5 & 0
\end{array}\right]+8\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

$A_{3, *}=2\left[\begin{array}{llllll}1 & 2 & 3 & 0 & -9 & 0\end{array}\right]+6\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 5 & 0\end{array}\right]+15\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$,
and
$A_{4, *}=1\left[\begin{array}{llllll}1 & 2 & 3 & 0 & -9 & 0\end{array}\right]+4\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 5 & 0\end{array}\right]+\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
Do be sure to check this arithmetic. I use $A_{i, *}$ to mean row i of A and $A_{*, j}$ to mean column j of A.
5. Let A and B be 2×2 matrices. Does

the column space of $A B \subseteq$ the column space of A

always happen? If yes, prove it. If no, give an example. yes. Take x in the column space of $A B$. So $x=A B y$ for some vector $y \in \mathbb{R}^{2}$. It follows that $x=A(B y)$ and $B y$ is a vector in \mathbb{R}^{2} so x is also in the column space of A.
6. Let A and B be 2×2 matrices. Does

the null space of $A B \subseteq$ the null space of A

always happen? If yes, prove it. If no, give an example. no. Let A be the identity matrix and B be the zero matrix. In this case $A B$ is the zero matrix. We see that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in the null space of $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, but $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is not in the null space of $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
7. True or False. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{2} x_{3}=0\right\}$. Is W a vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.
no. We see that $v=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $v^{\prime}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are both in W, but $v+v^{\prime}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is not in W.
8. True or False. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1}+x_{2}=x_{3}\right\}$. Is W a vector space? If yes, explain why. If no, give an example to show that the rules of vector space do not hold.
yes. We see that W is the null space of the matrix $\left[\begin{array}{ccc}1 & 1 & -1\end{array}\right]$ and we know that the null space of any matrix is a vector space.
9. Let A be a 2×3 matrix. Suppose that the column space of A has dimension 2. Is the system of equations $A x=b$ consistent for every choice of the vector b in \mathbb{R}^{2} ? Explain.
yes. The column space of A is a two dimensional subspace of \mathbb{R}^{2}, which has dimension 2 . It follows that the column space of A is equal to \mathbb{R}^{2}. In other words, if b is a vector in \mathbb{R}^{2}, then there exists a vector x in \mathbb{R}^{3}, with $A x=b$. That, is $A x=b$ has a solution for every choice of b.

