PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 10 problems on 5 pages. Each problem is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door later today, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define "linearly independent". Use complete sentences. The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.

2. Define "non-singular". Use complete sentences.

The square matrix A is non-singular if the only column vector x with $A x=0$ is $x=0$.
3. Let A be an $n \times n$ matrix. List three conditions which are equivalent to the statement " A is non-singular". (I expect three new conditions in addition to " A is nonsingular". Also, I do not expect you to repeat your answer to problem 2.)
The following conditions are equivalent.
(0) The matrix A is non-singular.
(1) The columns of A are linearly independent.
(2) The system of equations $A x=b$ has a unique solution for each vector $b \in \mathbb{R}^{n}$.
(3) The matrix A is invertible.
4. Find the GENERAL solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
\begin{array}{rllll}
x_{1}+3 x_{2} & +4 x_{3}+2 x_{4}+4 x_{5} & =16 \\
x_{1}+3 x_{2} & +4 x_{3}+3 x_{4}+6 x_{5} & =21 \\
2 x_{1}+6 x_{2} & +8 x_{3} & +5 x_{4}+10 x_{5} & =37
\end{array}
$$

Consider

$$
\left[\begin{array}{ccccc|c}
1 & 3 & 4 & 2 & 4 & 16 \\
1 & 3 & 4 & 3 & 6 & 21 \\
2 & 6 & 8 & 5 & 10 & 37
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to get:

$$
\left[\begin{array}{lllll|c}
1 & 3 & 4 & 2 & 4 & 16 \\
0 & 0 & 0 & 1 & 2 & 5 \\
0 & 0 & 0 & 1 & 2 & 5
\end{array}\right]
$$

Apply $R_{3} \mapsto R_{3}-R_{2}$ and $R_{1} \mapsto R_{1}-2 R_{2}$ to get:

$$
\left[\begin{array}{lllll|l}
1 & 3 & 4 & 0 & 0 & 6 \\
0 & 0 & 0 & 1 & 2 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution of this system of equations is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0 \\
0 \\
5 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

Some specific solutions are:

$$
\left[\begin{array}{l}
6 \\
0 \\
0 \\
5 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
1 \\
0 \\
5 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
0 \\
1 \\
5 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
6 \\
0 \\
0 \\
3 \\
1
\end{array}\right] .
$$

(We took $x_{2}=x_{3}=x_{5}=0, x_{2}=1$ with $x_{3}=x_{5}=0, x_{3}=1$ with $x_{2}=x_{5}=0, x_{5}=1$ with $x_{2}=x_{3}=0$.) We check that each specific solution does indeed satisfy the equations:

$$
\begin{array}{cll}
6+10=16 & 3+3+10=16 & 2+4+10=16 \\
6+15=21 & 3+3+15=21 & 2+4+15=21 \\
12+25=37 & 6+6+25=37 & 4+8+25=37
\end{array}
$$

$$
\begin{gathered}
6+6+4=16 \\
6+9+6=21 \\
12+15+10=37 . \checkmark
\end{gathered}
$$

5. Are the vectors $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], v_{3}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ linearly independent? Explain.
We solve

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{}
\end{equation*}
$$

We look at

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}$ and $R_{3} \mapsto R_{3}-3 R_{1}$ to get

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right]
$$

Apply $R_{3} \mapsto R_{3}-2 R_{2}$ to get

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right]
$$

Replace $R_{2} \mapsto-(1 / 3) R_{2}$

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-4 R_{2}$ to get

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution of $\left({ }^{*}\right)$ is

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=c_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

Take $c_{3}=1$ to get

$$
1 v_{1}-2 v_{2}+1 v_{3}=0
$$

Do check that this claim is true:

$$
1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-2\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+1\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

This is a non-trivial linear combination of v_{1}, v_{2}, v_{3} which equals zero. We conclude that v_{1}, v_{2}, v_{3} are linearly dependent.
6. True or False. (If true, explain why or give a proof. If false, give a counter example.) If A, B are 2×2 invertible matrices, then $A B$ is an invertible matrix.
TRUE. If the inverse of A is called A^{-1} and the inverse of B is called B^{-1}, then $B^{-1} A^{-1}$ is the inverse of $A B$ because $B^{-1} A^{-1} A B=I$ and $A B B^{-1} A^{-1}=I$.
7. True or False. (If true, explain why or give a proof. If false, give a counter example.) If the vectors v_{1}, v_{2}, and v_{3} are linearly independent, then the vectors $v_{1}+v_{3}, v_{2}+v_{3}$, and $v_{1}+v_{2}$ are also linearly independent. TRUE. Suppose
$\left({ }^{* *}\right) \quad c_{1}\left(v_{1}+v_{3}\right)+c_{2}\left(v_{2}+v_{3}\right)+c_{3}\left(v_{1}+v_{2}\right)=0$.
Then,

$$
\left(c_{1}+c_{3}\right) v_{1}+\left(c_{2}+c_{3}\right) v_{2}+\left(c_{1}+c_{2}\right) v_{3}=0 .
$$

The vectors v_{1}, v_{2}, v_{3} are linearly independent; consequently, the coefficients $c_{1}+c_{3}, c_{2}+c_{3}, c_{1}+c_{2}$ all are zero. It will take a few minutes to find the solution set of the equations

$$
\begin{array}{r}
c_{1}+c_{3}=0 \\
c_{2}+c_{3}=0 \\
c_{1}+c_{2}=0 .
\end{array}
$$

Fortunately, we are well prepared for that project. Look at

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{1}$ to get

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{2}$ to get

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right] .
$$

The bottom equation tells me that c_{3} must be zero. The second equation now tells me that c_{2} must be zero. The top equation now
tells me that $c_{1}=0$. The only solution of $\left({ }^{* *}\right)$ is $c_{1}=c_{2}=c_{3}=0$. We conclude that $v_{1}+v_{3}, v_{2}+v_{3}$, and $v_{1}+v_{2}$ are linearly independent.
8. True or False. (If true, explain why or give a proof. If false, give a counter example.) If the vectors v_{1}, v_{2}, and v_{3} are linearly independent, then the vectors $v_{1}-v_{3}, v_{3}-v_{2}$, and $v_{2}-v_{1}$ are also linearly independent.
FALSE. It does not matter what v_{1}, v_{2}, and v_{3} are, we have

$$
1\left(v_{1}-v_{3}\right)+1\left(v_{3}-v_{2}\right)+1\left(v_{2}-v_{1}\right)=0
$$

Thus, we have a non-trivial linear combination of $v_{1}-v_{3}, v_{3}-v_{2}$, and $v_{2}-v_{1}$ which equals zero. We conclude that $v_{1}-v_{3}, v_{3}-v_{2}$, and $v_{2}-v_{1}$ are linearly dependent. If you want to make a concrete counterexample, take

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

We see that v_{1}, v_{2}, and v_{3} are linearly independent, but

$$
v_{1}-v_{3}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad v_{3}-v_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \quad v_{2}-v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

are linearly dependent because

$$
1\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

9. True or False. (If true, explain why or give a proof. If false, give a counter example.) If A, B, and C are 2×2 matrices, with $A \neq 0$ and $B A=C A$, then $B=C$.

FALSE. Take $A=B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 45 \\ 0 & 86\end{array}\right]$. We see that $A \neq 0, B \neq C$, but $B A$ and $C A$ are both equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
10. True or False. (If true, explain why or give a proof. If false, give a counter example.) If A, B are 2×2 matrices, with $A B$ equal to the identity matrix, then $B A$ is also equal to the identity matrix.
TRUE. The hypothesis $A B=I$ ensures that B is non-singular, because if $B x=0$, then

$$
x=I x=A B x=A 0=0 .
$$

The non-singular matrix theorem tells us that B is invertible. (See problem 3.) Let B^{-1} be the inverse of B. So, $B B^{-1}=I$ and $B^{-1} B=I$. Now multiply $A B=I$ by B^{-1} (on the right) to get

$$
A=A B B^{-1}=I B^{-1}=B^{-1}
$$

So, $A=B^{-1}$. We see that $B A=B B^{-1}=I$.

