Math 544, Summer 2001, Exam 4

PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 5 points. SHOW your work. $C I R C L E$ your answer. CHECK your answer whenever possible.
No Calculators.

1. Define "basis". Use complete sentences.
2. Define "null space". Use complete sentences.
3. Complete the following definition. The vectors $v_{1}, v_{2}, \ldots, v_{n}$ span the vector space V, if $v_{1}, v_{2}, \ldots, v_{n}$ are in V and
4. Suppose A is an $n \times n$ matrix and $A x=0$ has infinitely many solutions. Let b be a vector in \mathbb{R}^{n}.
(a) Can $A x=b$ have no solution?
(b) Can $A x=b$ have exactly one solution?
(c) Can $A x=b$ have infinitely many solutions?
(d) EXPLAIN each answer.
5. Suppose v_{1}, \ldots, v_{n} are linearly independent vectors in \mathbb{R}^{n}. Do v_{1}, \ldots, v_{n} have to span \mathbb{R}^{n} ? EXPLAIN.
6. Let \mathcal{B} be the basis $\left[\begin{array}{c}3 \\ -5\end{array}\right],\left[\begin{array}{c}-4 \\ 6\end{array}\right]$ of \mathbb{R}^{2}. Suppose that x is the vector in \mathbb{R}^{2} whose coordinate vector with respect to the basis \mathcal{B} is $[x]_{\mathcal{B}}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$. What is the usual representation of x ?
7. Let \mathcal{B} be the basis $\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{c}2 \\ -5\end{array}\right]$ of \mathbb{R}^{2}. Let $x=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ be a vector in \mathbb{R}^{2}. Find the coordinate vector $[x]_{\mathcal{B}}$ of x with respect to the basis \mathcal{B}.
8. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If U and V are subspaces of \mathbb{R}^{2}, then the union $U \cup V$ is also a subspace of \mathbb{R}^{2}.
9. Find a basis for the vector space spanned by

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{c}
3 \\
2 \\
8 \\
-3
\end{array}\right] .
$$

Show your work. Check your answer.
10. Let $A=\left[\begin{array}{ccccccc}1 & 2 & 0 & 3 & 5 & 0 & 9 \\ 1 & 2 & 1 & 7 & 11 & 0 & 17 \\ 1 & 2 & 0 & 3 & 5 & 1 & 16 \\ 1 & 2 & 0 & 3 & 5 & 1 & 16 \\ 1 & 2 & 0 & 3 & 5 & 0 & 9\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of A. Show your work. Check your answer.

