Math 544, Summer 2001, Exam 4

PRINT Your Name:_____

There are 10 problems on 5 pages. Each problem is worth 5 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

- 1. Define "basis". Use complete sentences.
- 2. Define "null space". Use complete sentences.
- 3. Complete the following definition. The vectors v_1, v_2, \ldots, v_n span the vector space V, if v_1, v_2, \ldots, v_n are in V and
- 4. Suppose A is an $n \times n$ matrix and Ax = 0 has infinitely many solutions. Let b be a vector in \mathbb{R}^n .
 - (a) Can Ax = b have no solution?
 - (b) Can Ax = b have exactly one solution?
 - (c) Can Ax = b have infinitely many solutions?
 - (d) **EXPLAIN** each answer.
- 5. Suppose v_1, \ldots, v_n are linearly independent vectors in \mathbb{R}^n . Do v_1, \ldots, v_n have to span \mathbb{R}^n ? **EXPLAIN**.
- 6. Let \mathcal{B} be the basis $\begin{bmatrix} 3 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 6 \end{bmatrix}$ of \mathbb{R}^2 . Suppose that x is the vector in \mathbb{R}^2 whose coordinate vector with respect to the basis \mathcal{B} is $[x]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. What is the usual representation of x?
- 7. Let \mathcal{B} be the basis $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -5 \end{bmatrix}$ of \mathbb{R}^2 . Let $x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ be a vector in \mathbb{R}^2 . Find the coordinate vector $[x]_{\mathcal{B}}$ of x with respect to the basis \mathcal{B} .
- 8. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If U and V are subspaces of \mathbb{R}^2 , then the union $U \cup V$ is also a subspace of \mathbb{R}^2 .
- 9. Find a basis for the vector space spanned by

$$v_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \text{ and } v_4 = \begin{bmatrix} 3\\2\\8\\-3 \end{bmatrix}.$$

Show your work. Check your answer.

10. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 5 & 0 & 9 \\ 1 & 2 & 1 & 7 & 11 & 0 & 17 \\ 1 & 2 & 0 & 3 & 5 & 1 & 16 \\ 1 & 2 & 0 & 3 & 5 & 1 & 16 \\ 1 & 2 & 0 & 3 & 5 & 0 & 9 \end{bmatrix}$$
. Find a basis for the null space of A .

Find a basis for the column space of A. Show your work. Check your answer.