Math 544, Summer 2001, Exam 3

PRINT Your Name: ________ There are 10 problems on 4 pages. Each problem is worth 5 points. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

- 1. Define "one-to-one". Use complete sentences.
- 2. Define "onto". Use complete sentences.
- 3. Suppose A is an $n \times n$ matrix and Ax = 0 has a unique solution. Let b be a vector in \mathbb{R}^n . How many solutions does Ax = b have? Explain.
- 4. Are

$$v_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \text{and} \quad v_4 = \begin{bmatrix} 3\\2\\8\\-3 \end{bmatrix}$$

linearly dependent or linearly independent? Show your work. Check your answer.

5. Let
$$A = \begin{bmatrix} 1 & 0 & 5 \\ 1 & 1 & 0 \\ 3 & 2 & 6 \end{bmatrix}$$
. Find A^{-1} . Check your answer.

6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_2\\ 2x_1 + 5x_2 \end{bmatrix}$. Find a formula for T^{-1} . Check your answer.

7. The function $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation with $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}$

and
$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}4\\5\\6\end{bmatrix}$$
. Find a matrix A with $T(v) = Av$ for all $v \in \mathbb{R}^2$.
Check your answer.

- 8. Suppose v_1, \ldots, v_n are linearly independent vectors in \mathbb{R}^n . Do v_1, \ldots, v_n have to span \mathbb{R}^n ? Explain.
- 9. Suppose v_1, \ldots, v_n are vectors in \mathbb{R}^m , which span \mathbb{R}^m . Do v_1, \ldots, v_n have to be linearly independent? Explain.
- 10. Let A, B, and C be 2×2 matrices with A not equal to the zero matrix. Is it possible for AB = AC, but $B \neq C$? If possible, find such matrices. If not possible, explain why not.