Math 544, Summer 2001, Exam 3

PRINT Your Name: \qquad
There are 10 problems on 4 pages. Each problem is worth 5 points. SHOW your work. $C I R C L E$ your answer. CHECK your answer whenever possible. No Calculators.

1. Define "one-to-one". Use complete sentences.
2. Define "onto". Use complete sentences.
3. Suppose A is an $n \times n$ matrix and $A x=0$ has a unique solution. Let b be a vector in \mathbb{R}^{n}. How many solutions does $A x=b$ have? Explain.
4. Are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{c}
3 \\
2 \\
8 \\
-3
\end{array}\right]
$$

linearly dependent or linearly independent? Show your work. Check your answer.
5. Let $A=\left[\begin{array}{lll}1 & 0 & 5 \\ 1 & 1 & 0 \\ 3 & 2 & 6\end{array}\right]$. Find A^{-1}. Check your answer.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+3 x_{2} \\ 2 x_{1}+5 x_{2}\end{array}\right]$. Find a formula for T^{-1}. Check your answer.
7. The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation with $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Find a matrix A with $T(v)=A v$ for all $v \in \mathbb{R}^{2}$. Check your answer.
8. Suppose v_{1}, \ldots, v_{n} are linearly independent vectors in \mathbb{R}^{n}. Do v_{1}, \ldots, v_{n} have to span \mathbb{R}^{n} ? Explain.
9. Suppose v_{1}, \ldots, v_{n} are vectors in \mathbb{R}^{m}, which span \mathbb{R}^{m}. Do v_{1}, \ldots, v_{n} have to be linearly independent? Explain.
10. Let A, B, and C be 2×2 matrices with A not equal to the zero matrix. Is it possible for $A B=A C$, but $B \neq C$? If possible, find such matrices. If not possible, explain why not.

