Math 544, Summer 2001, Exam 1

PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Compute $\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 6 & 7\end{array}\right]$.
2. Express $v=\left[\begin{array}{l}5 \\ 7 \\ 5\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, if possible.
3. Express $v=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, if possible.
4. Consider the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2} & & -x_{5} & =1 \\
& x_{2}+2 x_{3}+x_{4} & +3 x_{5} & =1 \\
x_{1} & & -x_{3}+x_{4} & +x_{5}
\end{aligned}=0 .
$$

Write these equations in the form $A x=b$, where A is a matrix and x and b are column vectors.
5. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2} & \\
& -x_{5}
\end{aligned}=1 .
$$

Also find three particular solutions of this system of equations. Be sure to check that all three of your particular solutions really satisfy the original system of linear equations.
6. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}=4 \\
& x_{1}+2 x_{2}=6 .
\end{aligned}
$$

7. Find the general solution of the following system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{2}=4 \\
x_{1}+2 x_{2}=6 \\
5 x_{1}+8 x_{2}=26
\end{array}
$$

8. Define "span". Use complete sentences.
9. Define "linear combination". Use complete sentences.
10. Find h so that $v=\left[\begin{array}{c}3 \\ -5 \\ h\end{array}\right]$ is in the span of $v_{1}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-5 \\ -8 \\ 2\end{array}\right]$.
