SOLUTIONS to the FINAL Exam, Math 544, Spring, 2003 PRINT Your Name:

There are 20 problems on 12 pages. Each problem is worth 5 points. The exam is worth a total of 100 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your course grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail. Otherwise, get your course grade from VIP.

Recall that \mathcal{P}_n is the vector space of polynomials of degree at most n with real number coefficients.

Recall that the matrix A is *skew-symmetric* if $A^{T} = -A$.

1. Suppose that $T: \mathcal{P}_2 \to \mathcal{P}_4$ is a linear transformation, where $T(1) = x^4$, $T(x+1) = x^3 - 2x$, and $T(x^2+2x+1) = x$. Find $T(x^2+5x-1)$.

Observe that $x^2 + 5x - 1 = (x^2 + 2x + 1) + 3(x + 1) - 5(1)$; so

$$T(x^{2} + 5x - 1) = T(x^{2} + 2x + 1) + 3T(x + 1) - 5T(1)$$

$$= x + 3(x^3 - 2x) - 5x^4 = \boxed{-5x^4 + 3x^3 - 5x}$$

2. Let W be the subspace of \mathcal{P}_4 which is defined as follows: the polynomial p(x) is in W if and only if p(1)+p(-1) = 0and p(2)+p(-2) = 0. Find the dimension of W. Explain. Consider the linear transformation $T: \mathcal{P}_4 \to \mathbb{R}^2$, which is given by $T(p(x)) = \begin{bmatrix} p(1) + p(-1) \\ p(2) + p(-2) \end{bmatrix}$. The vector space W is the null space of T. So the dimension of W is equal to the dimension of \mathcal{P}_4 minus the dimension of the image of T. We know that dim $\mathcal{P}_4 = 5$, since $1, x, x^2, x^3, x^4$ is a basis for \mathcal{P}_4 . The image of T is all of \mathbb{R}^2 because the image of T is a subspace of \mathbb{R}^2 which

contains
$$T(1) = \begin{bmatrix} 2\\ 2 \end{bmatrix}$$
 and $T(x^2) = \begin{bmatrix} 2\\ 8 \end{bmatrix}$. The vectors $\begin{bmatrix} 2\\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 8 \end{bmatrix}$ span \mathbb{R}^2 . We conclude that

dim
$$W = 5 - 2 = 3$$
.

(There are many other ways to reach this answer. The most straightforward thing to do is to calculate a basis for W.)

- 3. Let W be the set of 2×2 matrices whose trace is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication. Recall that the *trace* of a square matrix is the sum of its diagonal elements.
- Yes |, W| is a vector space with basis

0	1]	[0	0]	[-1	0]
0	0,	$\lfloor 1$	0,	0	1]

4. Let W be the set of polynomials p(x) in \mathcal{P}_3 with p(0) = 2. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.

No, W is not a vector space. The polynomial p(x) = 2 is in W but the polynomial 3p(x), which is the constant polynomial 6, is not in W.

5. Let W be the set of 2×2 matrices whose determinant is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.

No, W is not a vector space. The matrices
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are in W, but their sum, which is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, is not in W.

- 6. Let W be the set of polynomials p(x) in \mathcal{P}_3 with p(2) = 0. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
- Yes, W is a vector space with basis

$$x-2, (x-2)^2, (x-2)^3$$

7. Find $\lim_{n \to \infty} A^n$, where $A = \begin{bmatrix} 2 & \frac{3}{2} \\ -1 & -\frac{1}{2} \end{bmatrix}$. This problem would be easy if A were a diagonal matrix. Lets diagonalize A. The eigenvalues of A satisfy

$$0 = \det(A - \lambda I) = (2 - \lambda)(-\frac{1}{2} - \lambda) + \frac{3}{2} = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2}$$
$$= (\lambda - 1)(\lambda - \frac{1}{2}).$$

The eigenvalues of A are $\lambda = 1$ and $\lambda = \frac{1}{2}$. The eigenvectors which belong to $\lambda = 1$ are the nullspace of $A - I = \begin{bmatrix} 1 & \frac{3}{2} \\ -1 & -\frac{3}{2} \end{bmatrix}$. Replace row 2 by row 2 plus row 1 to get $\begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 0 \end{bmatrix}$. The eigenspace which belongs to $\lambda = 1$ is $x_1 = -\frac{3}{2}x_2$ and x_2 can be anything. The vector $v_1 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ is a basis for the eigenspace which belongs to $\lambda = 1$. By the way

$$Av_{1} = \begin{bmatrix} 2 & \frac{3}{2} \\ -1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -6+3 \\ 3-1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} = v_{1},$$

as expected. The eigenspace which belongs to $\lambda = \frac{1}{2}$ is the null space of $A - \frac{1}{2} = \begin{bmatrix} \frac{3}{2} & \frac{3}{2} \\ -1 & -1 \end{bmatrix}$. Exchange the two rows: $\begin{bmatrix} -1 & -1 \\ \frac{3}{2} & \frac{3}{2} \end{bmatrix}$. Replace row 2 by row 2 plus $\frac{3}{2}$ row 1: $\begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$. Multiply row 1 by -1: $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. The eigenspace which belongs to $\lambda = \frac{1}{2}$ is $x_1 = -x_2$ and x_2 can be anything. The vector $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is a basis for the eigenspace which belongs to $\lambda = \frac{1}{2}$. By the way

$$Av_{2} = \begin{bmatrix} 2 & \frac{3}{2} \\ -1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 + \frac{3}{2} \\ 1 - \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

 $=\frac{1}{2}v_2$, as expected. Now we know that

$$A\begin{bmatrix} -3 & -1\\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -1\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & \frac{1}{2} \end{bmatrix}.$$

Let

$$D = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$
, and $S = \begin{bmatrix} -3 & -1 \\ 2 & 1 \end{bmatrix}$.

We calcualate that $S^{-1} = \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix}$. We saw that AS = SD. It follows that $A = SDS^{-1}$ and

$$\lim_{n \to \infty} A^n = S \lim_{n \to \infty} D^n S^{-1} = \begin{bmatrix} -3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -2 & -2 \end{bmatrix}$$

8. Define "linear transformation". Use complete sentences.

The function T from the vector space V to the vector space W is a linear transformation if $T(v_1 + v_2) = T(v_1) + T(v_2)$ and $T(rv_1) = rT(v_1)$ for all v_1 and v_2 in V and all r in \mathbb{R} .

9. Define "eigenvector". Use complete sentences.

Let A be a square matrix. The vector v is an *eigenvector* of A belonging to the eigenvalue λ provided $Av = \lambda v$ and $Aw = \lambda w$ for some non-zero vector w.

10. Define "linearly independent". Use complete sentences.

The vectors v_1, \ldots, v_p in the vector space V are linearly independent if the only numbers c_1, \ldots, c_p with $\sum_{i=1}^p c_i v_i = 0$ are $c_1 = \cdots = c_p = 0$.

11. Define "non-singular". Use complete sentences. The square matrix A is non-singular if the only column vector x with Ax = 0 is x = 0.

12. Define "null space". Use complete sentences.

The *null space* of the matrix A is the set of all vectors x with Ax = 0.

13. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If A is a 2×2 skew-symmetric matrix, then A has at least one real eigenvalue.

FalseThe eigenvectors of
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
are $\pm \imath$

14. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) Every 4×4 skew-symmetric matrix is singular. False | The matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

is non-singular.

15. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If v_1, v_2, v_3 are linearly independent vectors in the vector space V and $T: V \to W$ is a linear transformation of vector spaces, then $T(v_1), T(v_2), T(v_3)$ are linearly independent vectors in the vector space W.

False Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}$ which is multiplication by $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. Let

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \text{ and } v_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

We see that v_1 , v_2 , and v_3 are linearly independent in \mathbb{R}^3 , but $T(v_1), T(v_2), T(v_3)$ are linearly dependent in \mathbb{R} .

16. Find the general solution of the system of linear equations Ax = b. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 6 \\ 9 \\ 10 \end{bmatrix}$$

The same matrix A appears in problems 16, 17, and 18.

I will do the arithmetic for 16, 17, and 18 all at the same time. Consider the augmented matrix

1	2	1	2	6	6
2	4	1	2	9	9
1	2	2	4	10	9

Replace row 2 by row 2 minus 2 times row 1. Replace row 3 by row 3 minus row 1.

[1	2	1	2	6	6
0	0	-1	-2	-3	-3
0	0	1	2	4	3

Replace row 1 by row 1 plus row 2. Replace row 3 by row 3 plus row 2

$\left[1 \right]$	2	0	0	3	3
0	0	-1	-2	-3	-3
0	0	0	0	1	0

Multiply row 2 by minus 1.

	1	2	0	0	3	3
(*)	0	0	1	2	3	3
	0	0	0	0	1	0

Ignore the column on the far right in problem 16. The bottom row of the augmented matrix

[1	2	0	0	3
0	0	1	2	3
0	0	0	0	1

tells us that 0 = 1. This is impossible, so the system of equations has No Solution.

17. Find the general solution of the system of linear equations Ax = b. If the system of equations has

more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 6 \\ 9 \\ 9 \end{bmatrix}$$

The same matrix A appears in problems 16, 17, and 18.

Start with the augmented matrix (*) from problem 16. Ignore column five. The resulting matrix is

1	2	0	0	3
0	0	1	2	3
0	0	0	0	0

The general solution set is

$$\begin{array}{c} x_1 = 3 - 2x_2 \\ x_2 = & x_2 \\ x_3 = 3 & -2x_4 \\ x_4 = & x_4 \end{array}$$

Three specific solutions are:

$v_1 = \begin{bmatrix} 3\\0\\3\\0 \end{bmatrix},$	$v_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 0 \end{bmatrix},$ a	and $v_3 = \begin{bmatrix} 3\\0\\1\\1 \end{bmatrix}$.
---	---	--

We check

$$Av_{1} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 9 \end{bmatrix} = b\checkmark$$

$$Av_{2} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 9 \end{bmatrix} = b\checkmark$$
$$Av_{3} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 9 \end{bmatrix} = b\checkmark$$

18. Find bases for the row space, column space, and null space of

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix}.$$

The same matrix A appears in problems 16, 17, and 18.

We put A into row reduced echelon form in problem 16. We may read this form from (*), simply ignore columns 5 and 6:

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The vectors

$$\begin{bmatrix} 1 & 2 & 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix}$

are a basis for the row space of A. The vectors

$$\begin{bmatrix} 1\\2\\1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1\\1\\2 \end{bmatrix}$$

are a basis for the column space of A. The vectors

$\lceil -2 \rceil$		ΓΟΓ
1	and	0
0	and	-2

are a basis for the null space of A.

19. Find the general solution of the system of linear equations Ax = b. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 7 \\ 1 & 3 & 6 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} -6 \\ -16 \\ -13 \end{bmatrix}.$$

Consider

$$\begin{bmatrix} 1 & 2 & 3 & | & -6 \\ 1 & 3 & 7 & | & -16 \\ 1 & 3 & 6 & | & -13 \end{bmatrix}$$

Replace row 2 with row 2 minus row 1. Replace row 3 with row 3 minus row 1:

1	2	3	-6]
0	1	4	-10
0	1	3	-7

Replace row 1 with row 1 minus 2 row 2. Replace row 3 with row 3 minus row 2:

Replace row 2 by row 2 plus 4 row 3. Replace row 1 by row 1 minus 5 row 3:

1	0	0	-1
0	1	0	2
0	0	-1	3

Multiply row 3 by -1.

$$\begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -3 \end{bmatrix}$$

The solution is
$$v = \begin{bmatrix} -1\\2\\-3 \end{bmatrix}$$
. We check this:
 $Av = \begin{bmatrix} 1 & 2 & 3\\1 & 3 & 7\\1 & 3 & 6 \end{bmatrix} \begin{bmatrix} -1\\2\\-3 \end{bmatrix} = \begin{bmatrix} -1+4-9\\-1+6-21\\-1+6-18 \end{bmatrix} = \begin{bmatrix} -6\\-16\\-13 \end{bmatrix} = b\checkmark$

20. Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 2 & 3 & 5 \end{bmatrix}$. One basis for the null space of A is

One basis for the null space of A is

$$v_1 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix}.$$

We apply the Gram-Schmidt orthogonalization process to this basis. Let $u_1 = v_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$. Let

$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix} - \frac{6}{5}\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} = \frac{1}{5}\begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix}.$$

Let

$$u_2 = \begin{bmatrix} -3\\ -6\\ 5\\ 0 \end{bmatrix}.$$

(Notice that $Au_2 = 0$ and $u_1^{\mathrm{T}}u_2 = 0$.) Let

$$u_{3}' = v_{3} - \frac{u_{1}^{\mathrm{T}}v_{3}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} - \frac{u_{2}^{\mathrm{T}}v_{3}}{u_{2}^{\mathrm{T}}u_{2}}u_{2} = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} - \frac{10}{5}\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} - \frac{15}{\underbrace{70}}_{\underbrace{\frac{3}{14}}}\begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix}$$

$$= \begin{bmatrix} -1\\ -2\\ 0\\ 1 \end{bmatrix} + \frac{1}{14} \begin{bmatrix} 9\\ 18\\ -15\\ 0 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -5\\ -10\\ -15\\ 14 \end{bmatrix}$$

Let

$$u_3 = \begin{bmatrix} -5 \\ -10 \\ -15 \\ 14 \end{bmatrix}.$$

It is easy to check that

$u_1 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix},$	$u_2 = \begin{bmatrix} -3\\ -6\\ 5\\ 0 \end{bmatrix}, \text{ and }$	$\begin{bmatrix} -5\\ -10\\ -15\\ 14 \end{bmatrix}$
--	---	---

is an orthogonal basis for the null space of $\,A\,.\,$