SOLUTIONS to the FINAL Exam, Math 544, Spring, 2003 PRINT Your Name: \qquad
There are 20 problems on 12 pages. Each problem is worth 5 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your course grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail. Otherwise, get your course grade from VIP.

Recall that \mathcal{P}_{n} is the vector space of polynomials of degree at most n with real number coefficients.

Recall that the matrix A is skew-symmetric if $A^{\mathrm{T}}=-A$.

1. Suppose that $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{4}$ is a linear transformation, where $T(1)=x^{4}, T(x+1)=x^{3}-2 x$, and $T\left(x^{2}+2 x+1\right)=x$. Find $T\left(x^{2}+5 x-1\right)$.
Observe that $x^{2}+5 x-1=\left(x^{2}+2 x+1\right)+3(x+1)-5(1)$; so

$$
\begin{aligned}
& T\left(x^{2}+5 x-1\right)=T\left(x^{2}+2 x+1\right)+3 T(x+1)-5 T(1) \\
& \quad=x+3\left(x^{3}-2 x\right)-5 x^{4}=-5 x^{4}+3 x^{3}-5 x .
\end{aligned}
$$

2. Let W be the subspace of \mathcal{P}_{4} which is defined as follows:

 the polynomial $p(x)$ is in W if and only if $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. Find the dimension of W. Explain. Consider the linear transformation $T: \mathcal{P}_{4} \rightarrow \mathbb{R}^{2}$, which is given by $T(p(x))=\left[\begin{array}{l}p(1)+p(-1) \\ p(2)+p(-2)\end{array}\right]$. The vector space W is the null space of T. So the dimension of W is equal to the dimension of \mathcal{P}_{4} minus the dimension of the image of T. We know that $\operatorname{dim} \mathcal{P}_{4}=5$, since $1, x, x^{2}, x^{3}, x^{4}$ is a basis for \mathcal{P}_{4}. The image of T is all of \mathbb{R}^{2} because the image of T is a subspace of \mathbb{R}^{2} whichcontains $T(1)=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $T\left(x^{2}\right)=\left[\begin{array}{l}2 \\ 8\end{array}\right]$. The vectors $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 8\end{array}\right]$ span \mathbb{R}^{2}. We conclude that

$$
\operatorname{dim} W=5-2=3 .
$$

(There are many other ways to reach this answer. The most straightforward thing to do is to calculate a basis for W.)
3. Let W be the set of 2×2 matrices whose trace is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication. Recall that the trace of a square matrix is the sum of its diagonal elements.
Yes, W is a vector space with basis

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

4. Let W be the set of polynomials $p(x)$ in \mathcal{P}_{3} with $p(0)=2$. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
No, W is not a vector space. The polynomial $p(x)=2$ is in W but the polynomial $3 p(x)$, which is the constant polynomial 6 , is not in W.
5. Let W be the set of 2×2 matrices whose determinant is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.

No, W is not a vector space. The matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are in W, but their sum, which is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, is not in W.
6. Let W be the set of polynomials $p(x)$ in \mathcal{P}_{3} with $p(2)=0$. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
Yes, W is a vector space with basis

$$
\begin{array}{|ll}
\hline x-2, & (x-2)^{2}, \\
& (x-2)^{3} \\
\hline
\end{array}
$$

7. Find $\lim _{n \rightarrow \infty} A^{n}$, where $A=\left[\begin{array}{cc}2 & \frac{3}{2} \\ -1 & -\frac{1}{2}\end{array}\right]$.

This problem would be easy if A were a diagonal matrix. Lets diagonalize A. The eigenvalues of A satisfy

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I)= & (2-\lambda)\left(-\frac{1}{2}-\lambda\right)+\frac{3}{2}=\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2} \\
& =(\lambda-1)\left(\lambda-\frac{1}{2}\right) .
\end{aligned}
$$

The eigenvalues of A are $\lambda=1$ and $\lambda=\frac{1}{2}$. The eigenvectors which belong to $\lambda=1$ are the nullspace of $A-I=\left[\begin{array}{cc}1 & \frac{3}{2} \\ -1 & -\frac{3}{2}\end{array}\right]$. Replace row 2 by row 2 plus row 1 to get $\left[\begin{array}{cc}1 & \frac{3}{2} \\ 0 & 0\end{array}\right]$. The eigenspace which belongs to $\lambda=1$ is $x_{1}=-\frac{3}{2} x_{2}$ and x_{2} can be anything. The vector $v_{1}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ is a basis for the eigenspace which belongs to $\lambda=1$. By the way

$$
A v_{1}=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-6+3 \\
3-1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=v_{1}
$$

as expected. The eigenspace which belongs to $\lambda=\frac{1}{2}$ is the null space of $A-\frac{1}{2}=\left[\begin{array}{cc}\frac{3}{2} & \frac{3}{2} \\ -1 & -1\end{array}\right]$. Exchange the two rows: $\left[\begin{array}{cc}-1 & -1 \\ \frac{3}{2} & \frac{3}{2}\end{array}\right]$. Replace row 2 by row 2 plus $\frac{3}{2}$ row 1 : $\left[\begin{array}{cc}-1 & -1 \\ 0 & 0\end{array}\right]$. Multiply row 1 by -1 : $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. The eigenspace which belongs to $\lambda=\frac{1}{2}$ is $x_{1}=-x_{2}$ and x_{2} can be anything. The vector $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is a basis for the eigenspace which belongs to $\lambda=\frac{1}{2}$. By the way

$$
A v_{2}=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2+\frac{3}{2} \\
1-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$=\frac{1}{2} v_{2}$, as expected. Now we know that

$$
A\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] .
$$

Let

$$
D=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right], \quad \text { and } \quad S=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right] .
$$

We calcualate that $S^{-1}=\left[\begin{array}{cc}-1 & -1 \\ 2 & 3\end{array}\right]$. We saw that $A S=S D$. It follows that $A=S D S^{-1}$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A^{n} & =S \lim _{n \rightarrow \infty} D^{n} S^{-1}=\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
-2 & -2
\end{array}\right]
\end{aligned}
$$

8. Define "linear transformation". Use complete sentences.

The function T from the vector space V to the vector space W is a linear transformation if $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T\left(r v_{1}\right)=r T\left(v_{1}\right)$ for all v_{1} and v_{2} in V and all r in \mathbb{R}.
9. Define "eigenvector". Use complete sentences.

Let A be a square matrix. The vector v is an eigenvector of A belonging to the eigenvalue λ provided $A v=\lambda v$ and $A w=\lambda w$ for some non-zero vector w.
10. Define "linearly independent". Use complete sentences.
The vectors v_{1}, \ldots, v_{p} in the vector space V are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=\cdots=c_{p}=0$.
11. Define "non-singular". Use complete sentences. The square matrix A is non-singular if the only column vector x with $A x=0$ is $x=0$.
12. Define "null space". Use complete sentences.

The null space of the matrix A is the set of all vectors x with $A x=0$.
13. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If A is a 2×2 skew-symmetric matrix, then A has at least one real eigenvalue.
False The eigenvectors of $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ are $\pm \imath$.
14. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) Every 4×4 skew-symmetric matrix is singular.

False The matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

is non-singular.
15. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in the vector space V and $T: V \rightarrow W$ is a linear transformation of vector spaces, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in the vector space W.
False Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ which is multiplication by $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

We see that v_{1}, v_{2}, and v_{3} are linearly independent in \mathbb{R}^{3}, but $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly dependent in \mathbb{R}.
16. Find the general solution of the system of linear equations $A x=b$. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
6 \\
9 \\
10
\end{array}\right] .
$$

The same matrix A appears in problems 16, 17, and 18.

I will do the arithmetic for 16,17 , and 18 all at the same time. Consider the augmented matrix

$$
\left[\begin{array}{cccc|c|c}
1 & 2 & 1 & 2 & 6 & 6 \\
2 & 4 & 1 & 2 & 9 & 9 \\
1 & 2 & 2 & 4 & 10 & 9
\end{array}\right]
$$

Replace row 2 by row 2 minus 2 times row 1 . Replace row 3 by row 3 minus row 1.

$$
\left[\begin{array}{cccc|c|c}
1 & 2 & 1 & 2 & 6 & 6 \\
0 & 0 & -1 & -2 & -3 & -3 \\
0 & 0 & 1 & 2 & 4 & 3
\end{array}\right]
$$

Replace row 1 by row 1 plus row 2 . Replace row 3 by row 3 plus row 2

$$
\left[\begin{array}{cccc|c|c}
1 & 2 & 0 & 0 & 3 & 3 \\
0 & 0 & -1 & -2 & -3 & -3 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Multiply row 2 by minus 1 .
(*)

$$
\left[\begin{array}{llll|l|l}
1 & 2 & 0 & 0 & 3 & 3 \\
0 & 0 & 1 & 2 & 3 & 3 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Ignore the column on the far right in problem 16. The bottom row of the augmented matrix

$$
\left[\begin{array}{llll|l}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

tells us that $0=1$. This is impossible, so the system of equations has No Solution.
17. Find the general solution of the system of linear equations $A x=b$. If the system of equations has
more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
6 \\
9 \\
9
\end{array}\right] .
$$

The same matrix A appears in problems 16, 17, and 18.

Start with the augmented matrix (*) from problem 16. Ignore column five. The resulting matrix is

$$
\left[\begin{array}{llll|l}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution set is

$$
\begin{array}{|lr|}
\hline x_{1}=3-2 x_{2} \\
x_{2}= & x_{2} \\
x_{3}=3 & -2 x_{4} \\
x_{4}= & x_{4} \\
\hline
\end{array}
$$

Three specific solutions are:

$$
v_{1}=\left[\begin{array}{l}
3 \\
0 \\
3 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
3 \\
0 \\
1 \\
1
\end{array}\right]
$$

We check

$$
A v_{1}=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
9 \\
9
\end{array}\right]=b \checkmark
$$

$$
\begin{aligned}
& A v_{2}=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
9 \\
9
\end{array}\right]=b \checkmark \\
& A v_{3}=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
9 \\
9
\end{array}\right]=b \checkmark
\end{aligned}
$$

18. Find bases for the row space, column space, and null space of

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

The same matrix A appears in problems 16, 17, and 18.

We put A into row reduced echelon form in problem 16. We may read this form from $\left(^{*}\right)$, simply ignore columns 5 and 6 :

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The vectors

$$
\left.\begin{array}{|llll}
\hline[1 & 2 & 0 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llll|}
0 & 0 & 1 & 2
\end{array}\right]
$$

are a basis for the row space of A. The vectors

are a basis for the column space of A. The vectors

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
19. Find the general solution of the system of linear equations $A x=b$. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 7 \\
1 & 3 & 6
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-6 \\
-16 \\
-13
\end{array}\right] .
$$

Consider

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & -6 \\
1 & 3 & 7 & -16 \\
1 & 3 & 6 & -13
\end{array}\right]
$$

Replace row 2 with row 2 minus row 1. Replace row 3 with row 3 minus row 1:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & -6 \\
0 & 1 & 4 & -10 \\
0 & 1 & 3 & -7
\end{array}\right]
$$

Replace row 1 with row 1 minus 2 row 2 . Replace row 3 with row 3 minus row 2 :

$$
\left[\begin{array}{ccc|c}
1 & 0 & -5 & 14 \\
0 & 1 & 4 & -10 \\
0 & 0 & -1 & 3
\end{array}\right]
$$

Replace row 2 by row 2 plus 4 row 3 . Replace row 1 by row 1 minus 5 row 3 :

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & -1 & 3
\end{array}\right]
$$

Multiply row 3 by -1 .

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

The solution is $v=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]$. We check this:

$$
A v=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 7 \\
1 & 3 & 6
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-1+4-9 \\
-1+6-21 \\
-1+6-18
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-16 \\
-13
\end{array}\right]=b \checkmark
$$

20. Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right]$.
One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right] .
$$

We apply the Gram-Schmidt orthogonalization process to this basis. Let $u_{1}=v_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$. Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right]
$$

(Notice that $A u_{2}=0$ and $u_{1}^{\mathrm{T}} u_{2}=0$.) Let

$$
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{10}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\underbrace{\frac{15}{70}}_{\frac{3}{14}}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]+\frac{1}{14}\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right]
$$

Let

$$
u_{3}=\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right] .
$$

It is easy to check that

$$
u_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right]
$$

is an orthogonal basis for the null space of A.

