FINAL Exam, Math 544, Spring, 2003

PRINT Your Name: \qquad
There are 20 problems on 12 pages. Each problem is worth 5 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your course grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail. Otherwise, get your course grade from VIP.

Recall that \mathcal{P}_{n} is the vector space of polynomials of degree at most n with real number coefficients.

Recall that the matrix A is skew-symmetric if $A^{\mathrm{T}}=-A$.

1. Suppose that $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{4}$ is a linear transformation, where $T(1)=x^{4}, T(x+1)=x^{3}-2 x$, and $T\left(x^{2}+2 x+1\right)=x$. Find $T\left(x^{2}+5 x-1\right)$.
2. Let W be the subspace of \mathcal{P}_{4} which is defined as follows: the polynomial $p(x)$ is in W if and only if $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. Find the dimension of W. Explain.
3. Let W be the set of 2×2 matrices whose trace is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication. Recall that the trace of a square matrix is the sum of its diagonal elements.
4. Let W be the set of polynomials $p(x)$ in \mathcal{P}_{3} with $p(0)=2$. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
5. Let W be the set of 2×2 matrices whose determinant is zero. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
6. Let W be the set of polynomials $p(x)$ in \mathcal{P}_{3} with $p(2)=0$. Is W a vector space? If YES, then give a basis for W, no proof is needed. If NO, give an example which shows that W is not closed under addition or scalar multiplication.
7. Find $\lim _{n \rightarrow \infty} A^{n}$, where $A=\left[\begin{array}{cc}2 & \frac{3}{2} \\ -1 & -\frac{1}{2}\end{array}\right]$.
8. Define "linear transformation". Use complete sentences.
9. Define "eigenvector". Use complete sentences.
10. Define "linearly independent". Use complete sentences.
11. Define "non-singular". Use complete sentences.
12. Define "null space". Use complete sentences.
13. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If A is a 2×2 skew-symmetric matrix, then A has at least one real eigenvalue.
14. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) Every 4×4 skew-symmetric matrix is singular.
15. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in the vector space V and $T: V \rightarrow W$ is a linear transformation of vector spaces, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in the vector space W.
16. Find the general solution of the system of linear equations $A x=b$. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
6 \\
9 \\
10
\end{array}\right]
$$

The same matrix A appears in problems 16, 17, and 18.
17. Find the general solution of the system of linear equations $A x=b$. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
6 \\
9 \\
9
\end{array}\right] .
$$

The same matrix A appears in problems 16, 17, and 18.
18. Find bases for the row space, column space, and null space of

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

The same matrix A appears in problems 16, 17, and 18.
19. Find the general solution of the system of linear equations $A x=b$. If the system of equations has more than one solution, then list three SPECIFIC solutions. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 7 \\
1 & 3 & 6
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-6 \\
-16 \\
-13
\end{array}\right]
$$

20. Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right]$.
