Exam 4, Math 544, Spring, 2003

PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 8 problems on 4 pages. Problem 1 is worth 15 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail.

I will leave your exam outside my office door about 6 PM SATURDAY, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the exam is finished.

1. Find a matrix B with $B^{2}=A$ for $A=\left[\begin{array}{cc}13 & 18 \\ -6 & -8\end{array}\right]$. I expect you to write down the four entries of B. Check your answer.
2. Define "linear transformation". Use complete sentences.
3. Define "eigenvalue". Use complete sentences.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $y=-x$. Find a matrix A with $T(v)=A v$ for all $v \in \mathbb{R}^{2}$. Check your answer.
5. Prove that every 3×3 skew-symmetric matrix is singular. (Recall that the matrix A is skew-symmetric if $A^{\mathrm{T}}=-A$.)
6. Prove that every 2×2 symmetric matrix has at least one real eigenvalue. (Recall that the matrix A is symmetric if $\left.A^{\mathrm{T}}=A.\right)$
7. Let v_{1}, v_{2}, and v_{3} be an orthogonal set of non-zero vectors. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.
8. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If A and B are square matrices, then the null space of $A+B$ is contained in the intersection of the null space of A and the null space of B.
