Math 544 Exam 2 Solutions Spring 2003
PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 8 problems on 4 pages. Problem 4 is worth 15 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators. If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail.
I will leave your exam outside my office door about 6 PM today, you may pick it up any time between then and the next class.
I will post the solutions on my website shortly after the exam is finished.

1. Define "linearly independent". Use complete sentences. The vectors v_{1}, \ldots, v_{r} are linearly independent if the only numbers c_{1}, \ldots, c_{r}, with $\sum_{i=1}^{r} c_{i} v_{i}=0$, are $c_{1}=\cdots=c_{r}=0$.
2. Define "non-singular". Use complete sentences. The $n \times n$ matrix A is non-singular if the only vector x in \mathbb{R}^{n} with $A x=0$ is $x=0$.
3. Let A be an $n \times n$ matrix. List three conditions which are equivalent to the statement " A is non-singular". (I expect three new conditions in addition to " A is nonsingular". Also, I do not expect you to repeat your answer to problem 2.)
4. The columns of A are linearly independent.
5. The system of equations $A x=b$ has a unique solution for every b in \mathbb{R}^{n}.
6. The matrix A is invertible.
7. Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 2 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}4 \\ 6\end{array}\right]$.
(a) Find the GENERAL solution of the system of equations $A x=b$.
(b) List two SPECIFIC solutions of $A x=b$, if possible. CHECK that the specific solutions satisfy the equations.
(c) Are the columns of A linearly independent? Explain.
(d) List vectors v_{1}, \ldots, v_{r} so that the null space of A is the span of v_{1}, \ldots, v_{r}. (You pick the appropriate number for r.)
(e) Is b in the column space of A ? Explain.

We apply Guassian Elimination to the augmented matrix

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & 4 \\
1 & 2 & 1 & 6
\end{array}\right] .
$$

Replace row 2 by row 2 minus row 1 to get

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & 4 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

We learn that the general solution of $A x=b$ is

The answer to (a) : $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$.

Two specific solutions of $A x=b$ are given below. In the one on the left, we took $x_{2}=0$. In the one on the right, we took $x_{2}=1$. An answer to (b) is
$\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right] \quad$ and $\quad\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$.

We check that these proposed solutions work. The matrix A times the left-most proposed solution is

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right] \checkmark
$$

The matrix A times the right-most proposed solution is

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right] \checkmark .
$$

(c) The columns of A are linearly DEPENDENT. The short fat theorem tells us that any three vectors in \mathbb{R}^{2} are linearly dependent.

The work we did to solve $A x=b$ also solves $A x=0$. We see that the solution of $A x=0$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] .
$$

In other words,

$$
\text { (d) the null space of } A \text { is the span of }\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

In (a) and (b), we learned that b is equal to 4 times the first column of A plus 2 times the third column of A. Thus,
(e) YES, b is in the column space of A.
5. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a

COUNTEREXAMPLE.) If U and V are subspaces of

 \mathbb{R}^{2}, then the union $U \cup V$ is also a subspace of \mathbb{R}^{2}.FALSE. Here is a counter example. Let

$$
U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{2}=0\right\} \quad \text { and } \quad V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}=0\right\} .
$$

The sets U and V are each subspaces of \mathbb{R}^{2}. The vectors $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $y=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are each in the union $U \cup V$ because $x \in U$ and $y \in V$, but $x+y=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is not in $U \cup V$ because $\left[\begin{array}{l}1 \\ 1\end{array}\right] \notin U$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right] \notin V$.
6. Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{\mathrm{T}} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.
Suppose c_{1}, c_{2}, and c_{3} are numbers with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{*}
\end{equation*}
$$

Multiply by v_{1}^{T} to get

$$
c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}+c_{2} \cdot v_{1}^{\mathrm{T}} v_{2}+c_{3} \cdot v_{1}^{\mathrm{T}} v_{3}=0
$$

The hypothesis tells us that $v_{1}^{\mathrm{T}} v_{2}=0$ and $v_{1}^{\mathrm{T}} v_{3}=0$. So, $c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}=0$. The hypothesis also tells us that v_{1} is not zero; from which it follows that $v_{1}^{\mathrm{T}} v_{1} \neq 0$. We conclude that $c_{1}=0$. Multiply (*) by v_{2}^{T} to see that $c_{2} \cdot v_{2}^{\mathrm{T}} v_{2}=0$; hence, $c_{2}=0$, since the number $v_{2}^{\mathrm{T}} v_{2} \neq 0$. Multiply (${ }^{*}$) by v_{3}^{T} to conclude that $c_{3}=0$. We have shown that each c_{i} MUST be zero. We conclude that v_{1}, v_{2}, and v_{3} are linearly independent.
7. Let

$$
W=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{R}^{4} \left\lvert\, \begin{array}{lllll}
1 x_{1} & +2 x_{2} & +3 x_{3} & = & x_{4} \\
2 x_{1} & +3 x_{2} & +4 x_{3} & = & 2 x_{4}
\end{array}\right.\right\}
$$

Is W a vector space? Explain.
YES, W is a vector space. Indeed, W is the null space of the matrix

$$
\left[\begin{array}{cccc}
1 & +2 & +3 & -1 \\
2 & +3 & +4 & -2
\end{array}\right] .
$$

We proved that the null space of A is a vector space for every matrix A.
8. Let

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x_{2}=x_{1} x_{3}\right\} .
$$

Is W a vector space? Explain.
NO, W is not a vector space because W is not closed under scalar multiplication since $x=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in W; but $2 x=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$ is not in W.

