Math 544Exam 2SolutionsSpring 2003PRINT Your Name:

Please also write your name on the back of the exam.

There are 8 problems on 4 pages. Problem 4 is worth 15 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail.

I will leave your exam outside my office door about 6PM today, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the exam is finished.

1. Define "linearly independent". Use complete sentences. The vectors v_1, \ldots, v_r are *linearly independent* if the only numbers c_1, \ldots, c_r , with $\sum_{i=1}^r c_i v_i = 0$, are $c_1 = \cdots = c_r = 0$.

2. Define "non-singular". Use complete sentences.

The $n \times n$ matrix A is non-singular if the only vector x in \mathbb{R}^n with Ax = 0 is x = 0.

- 3. Let A be an $n \times n$ matrix. List three conditions which are equivalent to the statement "A is non-singular". (I expect three new conditions in addition to "A is nonsingular". Also, I do not expect you to repeat your answer to problem 2.)
 - 1. The columns of A are linearly independent.
 - 2. The system of equations Ax = b has a unique solution for every b in \mathbb{R}^n .
 - 3. The matrix A is invertible.

4. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$.

- (a) Find the GENERAL solution of the system of equations Ax = b.
- (b) List two SPECIFIC solutions of Ax = b, if possible. CHECK that the specific solutions satisfy the equations.
- (c) Are the columns of *A* linearly independent? Explain.
- (d) List vectors v_1, \ldots, v_r so that the null space of A is the span of v_1, \ldots, v_r . (You pick the appropriate number for r.)
- (e) Is b in the column space of A? Explain.

We apply Guassian Elimination to the augmented matrix

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 1 & 2 & 1 & | & 6 \end{bmatrix}.$$

Replace row 2 by row 2 minus row 1 to get

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}.$$

We learn that the general solution of Ax = b is

The answer to (a) :	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	=	$\begin{bmatrix} 4\\0\\2\end{bmatrix}$	$+x_2$	$\begin{bmatrix} -2\\1\\0\end{bmatrix}$	•

Two specific solutions of Ax = b are given below. In the one on the left, we took $x_2 = 0$. In the one on the right, we took $x_2 = 1$. An answer to (b) is

$\lceil 4 \rceil$		$\lceil 2 \rceil$	
0	and	1	
$\lfloor 2 \rfloor$		$\lfloor 2 \rfloor$	

We check that these proposed solutions work. The matrix A times the left-most proposed solution is

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \checkmark$$

The matrix A times the right-most proposed solution is

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \checkmark.$$

(c) The columns of A are linearly DEPENDENT. The short fat theorem tells us that any three vectors in \mathbb{R}^2 are linearly dependent.

The work we did to solve Ax = b also solves Ax = 0. We see that the solution of Ax = 0 is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

In other words,

(d) the null space of A is the span of
$$\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}$$
.

In (a) and (b), we learned that b is equal to 4 times the first column of A plus 2 times the third column of A. Thus,

(e) YES, b is in the column space of A.

5. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If U and V are subspaces of \mathbb{R}^2 , then the union $U \cup V$ is also a subspace of \mathbb{R}^2 . FALSE. Here is a counter example. Let

$$U = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \middle| x_2 = 0 \right\} \quad \text{and} \quad V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \middle| x_1 = 0 \right\}.$$

The sets U and V are each subspaces of \mathbb{R}^2 . The vectors $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are each in the union $U \cup V$ because $x \in U$ and $y \in V$, but $x + y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is not in $U \cup V$ because $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin U$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin V$.

6. Let v_1 , v_2 , and v_3 be non-zero vectors in \mathbb{R}^4 . Suppose that $v_i^{\mathrm{T}}v_j = 0$ for all subscripts i and j with $i \neq j$. Prove that v_1 , v_2 , and v_3 are linearly independent.

Suppose c_1 , c_2 , and c_3 are numbers with

$$(*) c_1 v_1 + c_2 v_2 + c_3 v_3 = 0.$$

Multiply by v_1^{T} to get

$$c_1 \cdot v_1^{\mathrm{T}} v_1 + c_2 \cdot v_1^{\mathrm{T}} v_2 + c_3 \cdot v_1^{\mathrm{T}} v_3 = 0.$$

The hypothesis tells us that $v_1^{\mathrm{T}}v_2 = 0$ and $v_1^{\mathrm{T}}v_3 = 0$. So, $c_1 \cdot v_1^{\mathrm{T}}v_1 = 0$. The hypothesis also tells us that v_1 is not zero; from which it follows that $v_1^{\mathrm{T}}v_1 \neq 0$. We conclude that $c_1 = 0$. Multiply (*) by v_2^{T} to see that $c_2 \cdot v_2^{\mathrm{T}}v_2 = 0$; hence, $c_2 = 0$, since the number $v_2^{\mathrm{T}}v_2 \neq 0$. Multiply (*) by v_3^{T} to conclude that $c_3 = 0$. We have shown that each c_i MUST be zero. We conclude that v_1 , v_2 , and v_3 are linearly independent.

7. Let

$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 \left| \begin{array}{cccc} 1x_1 & +2x_2 & +3x_3 & = & x_4 & \text{and} \\ 2x_1 & +3x_2 & +4x_3 & = & 2x_4 \\ \end{array} \right\}.$$

Is W a vector space? Explain.

YES, W is a vector space.Indeed, W is the null space of thematrix

$$\begin{bmatrix} 1 & +2 & +3 & -1 \\ 2 & +3 & +4 & -2 \end{bmatrix}$$

We proved that the null space of A is a vector space for every matrix A.

8. Let

$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \, \middle| \, x_2 = x_1 x_3 \right\}.$$

Is W a vector space? Explain.

NO, W is not a vector space because W is not closed under scalar multiplication since $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is in W; but $2x = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ is not in W.