Math 544 Exam 2 Spring 2003

PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 8 problems on 4 pages. Problem 4 is worth 15 points. Each of the other problems is worth 5 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, send me an e-mail.
I will leave your exam outside my office door about 6PM today, you may pick it up any time between then and the next class.
I will post the solutions on my website shortly after the exam is finished.

1. Define "linearly independent". Use complete sentences.
2. Define "non-singular". Use complete sentences.
3. Let A be an $n \times n$ matrix. List three conditions which are equivalent to the statement " A is non-singular". (I expect three new conditions in addition to " A is non-singular". Also, I do not expect you to repeat your answer to problem 2.)
4. Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 2 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}4 \\ 6\end{array}\right]$.
(a) Find the GENERAL solution of the system of equations $A x=b$.
(b) List two SPECIFIC solutions of $A x=b$, if possible. CHECK that the specific solutions satisfy the equations.
(c) Are the columns of A linearly independent? Explain.
(d) List vectors v_{1}, \ldots, v_{r} so that the null space of A is the span of v_{1}, \ldots, v_{r}. (You pick the appropriate number for r.
(e) Is b in the column space of A ? Explain.
5. True or False. (If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.) If U and V are subspaces of \mathbb{R}^{2}, then the union $U \cup V$ is also a subspace of \mathbb{R}^{2}.
6. Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{\mathrm{T}} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.
7. Let

$$
W=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{R}^{4} \left\lvert\, \begin{array}{llllll}
1 x_{1} & +2 x_{2} & +3 x_{3} & = & x_{4} & \text { and } \\
2 x_{1} & +3 x_{2} & +4 x_{3} & = & 2 x_{4}
\end{array}\right.\right\}
$$

Is W a vector space? Explain.
8. Let

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x_{2}=x_{1} x_{3}\right\}
$$

Is W a vector space? Explain.

