Math 544, Exam 1, Spring 2003, SOLUTIONS
PRINT Your Name: \qquad
Please also write your name on the back of the exam.
There are 10 problems on 6 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.
If I know your e-mail address, I will e-mail your grade to you.
I will leave your exam outside my office door about 6PM today, you may pick it up any time between then and the next class.
I will post the solutions on my website shortly after the exam is finished.

1. Find the general solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=4 \\
& 4 x_{1}+6 x_{2}=7
\end{aligned}
$$

Start with $\left[\begin{array}{ll|l}2 & 3 & 4 \\ 4 & 6 & 7\end{array}\right]$. Replace $R_{2} \mapsto R_{2}-2 R_{1}$ to get $\left[\begin{array}{cc|c}2 & 3 & 4 \\ 0 & 0 & -1\end{array}\right]$. The bottom row tells us that our solution must satisfy $0=-1$. This does not happen.

> The system of equations has NO solution.
2. Find the GENERAL solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
\begin{aligned}
& x_{1}+3 x_{2} \quad+3 x_{4}=1 \\
& x_{1}+3 x_{2}+x_{3}+5 x_{4}=3 \\
& 2 x_{1}+6 x_{2}+x_{3}+8 x_{4}=4 \text {. }
\end{aligned}
$$

Start with $\left[\begin{array}{cccc|c}1 & 3 & 0 & 3 & 1 \\ 1 & 3 & 1 & 5 & 3 \\ 2 & 6 & 1 & 8 & 4\end{array}\right]$. Replace $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to get $\left[\begin{array}{cccc|c}1 & 3 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2\end{array}\right]$. Replace
$R_{3} \mapsto R_{3}-R_{2}$ to get $\left[\begin{array}{cccc|c}1 & 3 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The GENERAL solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
0 \\
-2 \\
1
\end{array}\right]
$$

We record three specific examples. In the first, we take $x_{2}=x_{4}=0$. In the second, we take $x_{2}=1$ and $x_{4}=0$. In the third, we take $x_{2}=0$ and $x_{4}=1$. Our SPRCIFIC solutions are:

$$
\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
1 \\
2 \\
0
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]
$$

These solutions work because

$$
\begin{array}{ccc}
1=1 & -2+3=1 & -2+3=1 \\
1+2=3 & -2+3+2=3 & -2+5=3 \\
2+2=4 & -4+6+2=4 & -4+8=4 .
\end{array}
$$

3. Express $b=\left[\begin{array}{l}5 \\ 8\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. We must find c_{1} and c_{2} with $c_{1} v_{1}+c_{2} v_{2}=b$.

We apply Guassian Elimination to $\left[\begin{array}{ll|l}1 & 3 & 5 \\ 2 & 4 & 8\end{array}\right]$. Replace $R_{2}-2 R_{1}$ to get $\left[\begin{array}{cc|c}1 & 3 & 5 \\ 0 & -2 & -2\end{array}\right]$. Replace $R_{2} \mapsto(-1 / 2) R_{2}$ to get $\left[\begin{array}{ll|l}1 & 3 & 5 \\ 0 & 1 & 1\end{array}\right]$. Replace $R_{1} \mapsto R_{1}-3 R_{2}$ to get $\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$. We see that $c_{1}=2$ and $c_{2}=1$. We conclude that

$$
b=2 v_{1}+v_{2},
$$

and of course, this is correct because

$$
2 v_{1}+v_{2}=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]=b . \checkmark
$$

4. Define "linear combination". Use complete sentences. The vector v is a linear combination of the vectors v_{1}, \ldots, v_{p}, if there are numbers c_{1}, \ldots, c_{p}, with $v=c_{1} v_{1}+\cdots+c_{p} v_{p}$.
5. Define "linearly independent". Use complete sentences. The vectors v_{1}, \ldots, v_{p} are linearly independent if the only numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1+\cdots+c_{p} v_{p}=0 \text {, are }}$ a $c_{1}=\cdots=c_{p}=0$.
6. STATE the theorem about linear dependence or independence of p vectors in \mathbb{R}^{m}. (I call this theorem the Short Fat Theorem.) If $m<p$, then every set of p vectors in \mathbb{R}^{m} is linearly dependent.
7. True or False. (If true, explain why or give a proof. If false, give a counter example.) If A, B, and C are 2×2 matrices with $A \neq 0$ and $B A=C A$, then $B=C$. FALSE. Here is a counterexample. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$,
$B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 2 \\ 0 & 3\end{array}\right]$. Notice that $A \neq 0, B \neq C$ and $B A=C A$ because

$$
B A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
C A=\left[\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

8. True or False. (If true, explain why or give a proof. If false, give a counter example.) If A, B are 2×2 symmetric matrices, then $A B$ is a symmetric matrix. FALSE. Here is a counterexample. If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then A and B are each symmetric but

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]
$$

is not symmetric.
9. Which numbers a make $A=\left[\begin{array}{ll}1 & 2 \\ 2 & a\end{array}\right]$ non-singular? Explain. The matrix A is non-singular if the only column vector x with $A x=0$ is the zero column vector. We solve $A x=0$ and interpret our answer. We apply Gaussian Elimination to $\left[\begin{array}{ll}1 & 2 \\ 2 & a\end{array}\right]$. (In our heads we store the augmented column which consists entirerly of zeros throughout the entire calculation!) Replace $R_{2} \mapsto R_{2}-2 R_{1}$ to get $\left[\begin{array}{cc}1 & 2 \\ 0 & a-4\end{array}\right]$. This is far enough. If $a-4$ is equal to zero, then $A x=0$ has an infinite number of solutions. On the other hand, if $a-4$ is
not equal to zero, then the present matrix showes us that x_{2} must be zero and then x_{1} must be zero.

The matrix A is non-singular for every choice of a, except $a=4$.
10. Let $v_{1}, \quad v_{2}, \quad v_{3}$ be linearly independent vectors. PROVE that the vectors $v_{1}+v_{2}, v_{1}-v_{2}, v_{3}$ are also linearly independent. Suppose that c_{1}, c_{2}, c_{3} are numbers with

$$
c_{1}\left(v_{1}+v_{2}\right)+c_{2}\left(v_{1}-v_{2}\right)+c_{3} v_{3}=0 .
$$

We must show that c_{1}, c_{2}, and c_{3} all must be zero. Re-write the most recent equation as

$$
\left(c_{1}+c_{2}\right) v_{1}+\left(c_{1}-c_{2}\right) v_{2}+c_{3} v_{3}=0
$$

We are told that the vectors v_{1}, v_{2}, and v_{3} are linearly independent. It follows that

$$
c_{1}+c_{2}=0, \quad c_{1}-c_{2}=0, \quad \text { and } \quad c_{3}=0 .
$$

Add the first two equations to see that $2 c_{1}=0$. Divide by 2 to see that $c_{1}=0$. The first equation now tells us that $c_{2}=0$. The third equation tells us that $c_{3}=0$. We have shown that the only numbers c_{1}, c_{2}, c_{3} with

$$
c_{1}\left(v_{1}+v_{2}\right)+c_{2}\left(v_{1}-v_{2}\right)+c_{3} v_{3}=0
$$

are $c_{1}=c_{2}=c_{3}=0$. We conclude that the vectors $v_{1}+v_{2}$, $v_{1}-v_{2}, v_{3}$ are linearly independent.

