Math 544, Spring 2002, Final Exam

PRINT Your Name: \qquad
The exam is worth 100 points. There are 18 problems on 9 pages. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.
Your grade for the course will be available from VIP by the end of the week. Also, If you send me an e-mail (kustin@math.sc.edu) asking for your grade, I will e-mail it to you as soon as it is available.

1. (8 points) Let A be an $n \times n$ matrix. List 8 statements that are equivalent to the statement " A is invertible".
2. (5 points) Define "onto". Use complete sentences.
3. (5 points) Define "linearly independent". Use complete sentences.
4. (5 points) Define "linear transformation". Use complete sentences.
5. (5 points) The trace of the square matrix A is the sum of the numbers on its main diagonal. Let V be the set of all 3×3 matrices with trace 0 . The set V is a vector space. You do NOT have to prove this. Give a basis for V. NO justification is needed.
6. (5 points) Give an example of a matrix which is not diagonalizable. Explain why the matrix is not diagonalizable.
7. (8 points) Let $A=\left[\begin{array}{cc}7 & 6 \\ -3 & -2\end{array}\right]$. Diagonalize A. Find a matrix B with $B^{2}=A$. Check your answer.
8. (9 points) Let

$$
A=\left[\begin{array}{lllll}
1 & 0 & 3 & 6 & 9 \\
0 & 0 & 1 & 2 & 3 \\
1 & 0 & 2 & 4 & 6
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
$$

Solve $A x=b$. Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Check your answer.
9. (5 points) Find an orthogonal set which is a basis for the null space of $A=\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]$. Check your answer.
10. (5 points) Let

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -1 \\
1 & -1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]
$$

Find the least squares solution for $A x=b$. Be sure to check your answer, call it \hat{x}, by verifying that $b-A \hat{x}$ is orthogonal to the column space of A.
11. (5 points) Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed non-zero solution? Explain.
12. (5 points) Give an example of a two by two matrix A, with no zero entries, such that A^{2} is equal to the identity matrix.
13. (5 points) Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & -1 & 0 & -1 \\
1 & 0 & 1 & 1 \\
1 & 0 & -1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Solve $A x=b$. (You may do the problem any way you wish; however, you may find it helpful to notice that the columns of A form an orthogonal set.) Check your answer.
14. (5 points) Let $W=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is differentiable $\}$. Is W a vector space? Explain.
15. (5 points) Give an example of three 2×2 matrices A, B, and C, with A not the zero matrix, and $B \neq C$, but $B A=C A$.
16. (5 points) Let A and B be 2×2 matrices with A invertible. Does the column space of $B A$ have to equal the column space of B ? If the answer is yes, prove it. If the answer is no, give a counterexample.
17. (5 points) True or False. (If true, give a proof. If false, give a counter example.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in \mathbb{R}^{4} and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in \mathbb{R}^{4}.
18. (5 points) True or False. (If true, give a proof. If false, give a counter example.) If v_{1}, v_{2}, v_{3} are linearly dependent vectors in \mathbb{R}^{4} and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly dependent vectors in \mathbb{R}^{4}.

