Math 544, Spring 2002, Exam 3

PRINT Your Name: \qquad
There are 10 problems on 4 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Define "basis". Use complete sentences.
2. Define "null space". Use complete sentences.
3. Let $W=\left\{\left.\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a_{1}+a_{2}=a_{3}{ }^{2}\right\}$. Is W a vector space? Explain.
4. Let $W=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$. Is W a vector space? Explain.
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ \sin y\end{array}\right]$. Is T a linear transformation? Explain.
6. Give an example of three 2×2 matrices A, B, and C, with A not the zero matrix, and $B \neq C$, but $A B=A C$.
7. Let $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 9 \\ 3 & 6 & 6\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of A.
8. Let V be the subspace of \mathbb{R}^{3} which is spanned by

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
4 \\
9 \\
6
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{c}
6 \\
13 \\
12
\end{array}\right] .
$$

Find a basis for V.
9. Let v_{1}, \ldots, v_{n} be n linearly independent vectors in \mathbb{R}^{n}. Prove that v_{1}, \ldots, v_{n} is a basis for \mathbb{R}^{n}.
10. Let A and B be 2×2 matrices with A invertible. Does the columns space of $A B$ have to equal the column space of B ? If the answer is yes, prove it. If the answer is no, give a counterexample.

