## Math 544, Spring 2002, Exam 2

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Find the general solution of the following system of linear equations.

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}+x_{4}=2 \\
& x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=3 .
\end{aligned}
$$

Also find three particular solutions of this system of equations. Be sure to check that all three of your particular solutions really satisfy the original system of linear equations.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which leaves the origin fixed and rotates the $x y$-plane by $\pi / 4$ radians counterclockwise. What is the matrix $M$ which has the property that $T(v)=M v$ for all $v \in \mathbb{R}^{2}$ ?
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which reflects the $x y$-plane across the line $y=2 x$. What is the matrix $M$ which has the property that $T(v)=M v$ for all $v \in \mathbb{R}^{2}$ ?
4. True or False. (If true, give a proof. If false, give a counter example.) If $v_{1}, v_{2}, v_{3}$ are linearly independent vectors in $\mathbb{R}^{4}$ and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in $\mathbb{R}^{4}$.
5. True or False. (If true, give a proof. If false, give a counter example.) If $v_{1}, v_{2}, v_{3}$ are linearly dependent vectors in $\mathbb{R}^{4}$ and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly dependent vectors in $\mathbb{R}^{4}$.
6. True or False. (If true, give a proof. If false, give a counter example.) If $v_{1}, v_{2}, v_{3}$ are linearly independent vectors in $\mathbb{R}^{3}$, then $v_{1}, v_{2}, v_{3}$ span $\mathbb{R}^{3}$.
7. True or False. (If true, give a proof. If false, give a counter example.) If $A$ and $B$ are $2 \times 2$ matrices, then $(A B)^{\mathrm{T}}=A^{\mathrm{T}} B^{\mathrm{T}}$.
8. Consider the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, which is given by $T(v)=M v$ for all $v \in \mathbb{R}^{4}$, where $M=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 3\end{array}\right]$. Is $T$ one-to-one? Is $T$ onto? Explain your answer.
9. Define "onto". Use complete sentences.
10. Define "linear transformation". Use complete sentences.

