Math 544, Spring 2002, Exam 1

PRINT Your Name: \qquad
There are 10 problems on 6 pages. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
x_{2}+2 x_{3} & =5
\end{aligned}
$$

2. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
x_{2}+2 x_{3} & =5 \\
x_{1}+2 x_{2}+3 x_{3} & =10 .
\end{aligned}
$$

3. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x_{1}+2 x_{2} & =3 \\
x_{1}+3 x_{2} & =2 \\
3 x_{1}+8 x_{2} & =7 .
\end{aligned}
$$

4. Express $v=\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right]$ as a linear combination of $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]$, if possible.
5. Define "linear combination". Use complete sentences.
6. Define "linearly independent". Use complete sentences.
7. Define "linear transformation". Use complete sentences.
8. Fill in the blank with an inequality involving m and p and then prove the result. Let v_{1}, \ldots, v_{p} be vectors in \mathbb{R}^{m}. If \qquad , then v_{1}, \ldots, v_{p} are linearly dependent.
9. True or False. (If true, explain why or give a proof. If false, give a counter example.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in \mathbb{R}^{4} and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is a linear transformation, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in \mathbb{R}^{3}.
10. True or False. (If true, explain why or give a proof. If false, give a counter example.) If v_{1}, v_{2}, v_{3} are linearly independent vectors in \mathbb{R}^{4} and v_{4} is a vector in \mathbb{R}^{4} which is not a linear combination of v_{1}, v_{2}, and v_{3}, then $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent vectors in \mathbb{R}^{4}.
