Math 544, Spring 2002, Exam 1

PRINT Your Name:____

There are 10 problems on 6 pages. Each problem is worth 5 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. No **Calculators.**

1. Find the general solution of the following system of linear equations:

2. Find the general solution of the following system of linear equations:

3. Find the general solution of the following system of linear equations:

4. Express $v = \begin{bmatrix} 3\\2\\7 \end{bmatrix}$ as a linear combination of $v_1 = \begin{bmatrix} 1\\1\\3 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2\\3\\8 \end{bmatrix}$, if possible.

- 5. Define "linear combination". Use complete sentences.
- 6. Define "linearly independent". Use complete sentences.
- 7. Define "linear transformation". Use complete sentences.
- 8. Fill in the blank with an inequality involving m and p and then prove the result. Let v_1, \ldots, v_p be vectors in \mathbb{R}^m . If ______, then v_1, \ldots, v_p are linearly dependent.
- 9. True or False. (If true, explain why or give a proof. If false, give a counter example.) If v_1, v_2, v_3 are linearly independent vectors in \mathbb{R}^4 and $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation, then $T(v_1), T(v_2), T(v_3)$ are linearly independent vectors in \mathbb{R}^3 .
- 10. True or False. (If true, explain why or give a proof. If false, give a counter example.) If v_1, v_2, v_3 are linearly independent vectors in \mathbb{R}^4 and v_4 is a vector in \mathbb{R}^4 which is not a linear combination of v_1 , v_2 , and v_3 , then v_1, v_2, v_3, v_4 are linearly independent vectors in \mathbb{R}^4 .