\qquad
Quiz for May 30, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.
(Recall that the matrix M is symmetric if $M^{\mathrm{T}}=M$.)
Let A and B be $n \times n$ symmetric matrices. State a necessary and sufficient condition for the matrix $A B$ to be symmetric. Prove both directions of your assertion.
(You are supposed to state a true fact that looks like $A B$ is symmetric if and only if $X X X$. Then you are supposed to prove that if $A B$ is symmetric, then $X X X$ happens. Then you are supposed to prove that if $X X X$ happens, then $A B$ is symmetric. Of course, $X X X$ is more interesting than merely, " $A B$ is symmetric".)

ANSWER: The matrix $A B$ is symmetric if and only if $A B=B A$.
(\Rightarrow) Assume that $A B$ is symmetric. We must show that $A B=B A$. We know that

$$
A B=(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}=B A
$$

The first equality holds because $A B$ is symmetric. The second equality was estabished in class on Tuesday. The third equality holds because A and B are both symmetric.
(\Leftarrow) Assume that $A B=B A$. We must show that $A B$ is symmetric. We know that

$$
(A B)^{\mathrm{T}}=(B A)^{\mathrm{T}}=A^{\mathrm{T}} B^{\mathrm{T}}=A B .
$$

The first equality holds because $A B=B A$ is symmetric. The second equality was estabished in class on Tuesday. The third equality holds because A and B are both symmetric.

