Quiz for May 29, 2012

The quiz is worth 5 points. **Remove EVERYTHING from your desk except this quiz and a pen or pencil.** SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

Solve the following system of equations:

$$x_1+x_2 - x_5=1$$
 $x_2+2x_3+x_4+3x_5=1$
 $x_1 - x_3+x_4+x_5=0$

Use Guass-Jordan elimination. Check your answer.

ANSWER: Start with the matrix

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & 1 & 3 & | & 1 \\ 1 & 0 & -1 & 1 & 1 & | & 0 \end{bmatrix}.$$

Apply $R_3 \mapsto R_3 - R_1$ to obtain

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & 1 & 3 & | & 1 \\ 0 & -1 & -1 & 1 & 2 & | & -1 \end{bmatrix}.$$

Apply $R_1 \mapsto R_1 - R_2$ and $R_3 \mapsto R_3 + R_2$ to obtain

$$\begin{bmatrix} 1 & 0 & -2 & -1 & -4 & 0 \\ 0 & 1 & 2 & 1 & 3 & 1 \\ 0 & 0 & 1 & 2 & 5 & 0 \end{bmatrix}.$$

Apply $R_1 \mapsto R_1 + 2R_3$ and $R_2 \mapsto R_2 - 2R_3$ to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 6 & 0 \\ 0 & 1 & 0 & -3 & -7 & 1 \\ 0 & 0 & 1 & 2 & 5 & 0 \end{bmatrix}.$$

This matrix is in reduced row echelon from. The solution set is the set of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$

such that

$$x_1 = -3x_4 - 6x_5$$

$$x_2 = 1 + 3x_4 + 7x_5$$

$$x_3 = -2x_4 - 5x_5$$

such that x_4 and x_5 are arbitrary.

A different way to say this is to say that the solution set is

$$\left\{ \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -3\\3\\-2\\1\\0 \end{bmatrix} + x_5 \begin{bmatrix} -6\\7\\-5\\0\\1 \end{bmatrix} \middle| x_4, x_5 \in \mathbb{R} \right\}$$

Check. Our answer is correct. When $x_4 = x_5 = 0$ our answer is

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and this proposed solution works because

$$1 = 1$$

 $1 = 1$
 $0 = 0.$

When $x_4 = 1$ and $x_5 = 0$ our answer is

$$\begin{bmatrix} -3\\4\\-2\\1\\0 \end{bmatrix}$$

and this proposed solution works because

$$-3+4=1$$

 $4-4+1=1$
 $-3+2+1=0.$

When $x_4 = 0$ and $x_5 = 1$ our answer is

$$\begin{bmatrix} -6\\8\\-5\\0\\1 \end{bmatrix}$$

and this proposed solution works because

$$-6+8-1=1$$

 $8-10+3=1$
 $-6+5+1=0.$