PRINT Your Name: $\qquad$
Quiz for May 30, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.
Let $A$ and $B$ be $n \times n$ matrices show that $A B$ is non-singular. Prove that $A$ is non-singular.

ANSWER: We first show that $B$ is non-singular. Suppose that $v$ is a vector with $B v=0$. Multiply both sides of the equation on the left by $A$ to get $A(B v)=B 0$. It follows that $(A B) v=0$. The matrix $A B$ is non-singular; hence, $v=0$.

The matrix $B$ is non-singular; hence, according to the non-singular matrix theorem, $B$ has an inverse. Let $C$ be $B$ 's inverse.

Now we show that $A$ is non-singular. Suppose $v$ is a vector with $A v=0$. We know that $B C=I$. We have $0=A v=A B(C v)$. The matric $A B$ is non-singular by hypothesis; hence, the vector $C v$ is equal to zero. Multiply $C v=0$ by $B$ to conclude $B C v=0$. But, $B C=I$ and therefore, $v=0$.

