PRINT Your Name: \qquad
Quiz for June 21, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.

Recall that \mathcal{P}_{4} is the vector space of polynomials of degree less than or equal to 4 . Let W be the subspace of \mathcal{P}_{4} which is defined as follows: the polynomial $p(x)$ is in W if and only if $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. Find the dimension of W. Explain.

ANSWER: Consider the linear transformation $T: \mathcal{P}_{4} \rightarrow \mathbb{R}^{2}$, which is given by $T(p(x))=\left[\begin{array}{l}p(1)+p(-1) \\ p(2)+p(-2)\end{array}\right]$. The vector space W is the null space of T. So the dimension of W is equal to the dimension of \mathcal{P}_{4} minus the dimension of the image of T. We know that $\operatorname{dim} \mathcal{P}_{4}=5$, since $1, x, x^{2}, x^{3}, x^{4}$ is a basis for \mathcal{P}_{4}. The image of T is all of \mathbb{R}^{2} because the image of T is a subspace of \mathbb{R}^{2} which contains $T(1)=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $T\left(x^{2}\right)=\left[\begin{array}{l}2 \\ 8\end{array}\right]$. The vectors $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 8\end{array}\right]$ span \mathbb{R}^{2}. We conclude that

$$
\operatorname{dim} W=5-2=3
$$

(There are many other ways to reach this answer. The most straightforward thing to do is to calculate a basis for W.)

