PRINT Your Name: \qquad
Quiz for June 11, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.
Let W be the vector space which consists of all vectors $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ in \mathbb{R}^{4} with

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =0 \\
x_{2}-x_{4} & =0
\end{aligned}
$$

Find a basis for W.
ANSWER: The vector space W is the null space of $\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right]$. We apply Gauss Jordan Elimination. Replace Row 1 with Row 1 minus Row 2 to obtain $\left[\begin{array}{cccc}1 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1\end{array}\right]$. This matrix is in Reduced Row-Echelon Form. We read that W is the set of all

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

with

$$
\begin{aligned}
& x_{1}=x_{3}-x_{4} \\
& x_{2}=\quad x_{4} \\
& x_{3}=x_{3} \\
& x_{4}=\quad x_{4}
\end{aligned}
$$

In other words,

$$
w_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], w_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$

is a basis for W.

