PRINT Your Name: \qquad
Quiz for June 11, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Write in complete sentences. Express your work in a neat and coherent manner.
Let U and V be vector spaces which both are subsets of a vector space W. Let

$$
S=\{w \in W \mid w=u+v \quad \text { for some } u \in U \text { and } v \in V\}
$$

Prove that S is a vector space.

ANSWER:

The zero vector W is in S. The zero vector of W is in U because U is a vector space. The zero vector of W is in V because V is a vector space. Thus, $0+0=0$ is in S. (The first zero on the left side of the equation is 0 from U; the second zero is the 0 from V.)
S is closed under addition: Take s_{1} and s_{2} from S. It follows that $s_{1}=u_{1}+v_{1}$ and $s_{2}=u_{2}+v_{2}$ for some u_{i} in U and $v_{i} \in V$. Observe that

$$
s_{1}+s_{2}=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right)
$$

is in S since $u_{1}+u_{2}$ is in U (because U is a vector space) and $v_{1}+v_{2}$ is in V (because V is a vector space).
S is closed under addition: Take s_{1} from S and c from \mathbb{R}. It follows that $s_{1}=u_{1}+v_{1}$ for some u_{1} in U and $v_{1} \in V$. Observe that

$$
c s_{1}=\left(c u_{1}\right)+\left(c v_{1}\right)
$$

is in S since $c u_{1}$ is in U (because U is a vector space) and $c v_{1}$ is in V (because V is a vector space).

